Culture on Tissue‐Specific Coatings Derived from α‐Amylase‐Digested Decellularized Adipose Tissue Enhances the Proliferation and Adipogenic Differentiation of Human Adipose‐Derived Stromal Cells

2019 ◽  
Vol 15 (3) ◽  
pp. 1900118
Author(s):  
Arthi Shridhar ◽  
Alan Y. L. Lam ◽  
Yu Sun ◽  
Craig A. Simmons ◽  
Elizabeth R. Gillies ◽  
...  
2019 ◽  
Vol 35 (04) ◽  
pp. 358-367 ◽  
Author(s):  
Joris A. van Dongen ◽  
Joeri van Boxtel ◽  
Martin C. Harmsen ◽  
Hieronymus P. Stevens

AbstractLipofilling, the transplantation of adipose tissue, has already been used since the end of the 19th century. For decades, lipofilling was used to restore loss of volume due to aging, trauma, or congenital defects. Later on, the indications for the use of lipofilling expanded by treating aged skin, scars, and improving wound healing. The expansion was caused by the discovery of adipose derived stromal cells (ASCs) in adipose tissue and the development of very fine harvesting and injection cannulas which made it possible to inject small adipose tissue particles in small volume areas, such as the face. ASCs are multipotent stromal cells which reside in the stromal vascular fraction (SVF) of adipose tissue and are able to differentiate in multiple cell lineages and secrete a plurality of growth factors with regenerative potentials. The discovery of ASCs led toward more experimental cell-based therapies, that is, ASCs or SVF isolated by means of enzymatic isolation procedures. Later on, enzymatic isolation procedures were forbidden in many countries by legislation and were replaced by mechanical isolation procedures, such as the Nanofat and Fractionation of Adipose Tissue (FAT) procedures. The Nanofat procedure has been extensively investigated, especially as treatment for skin rejuvenation in the face. Though, substantial evidence is lacking for using facial lipofilling or any therapeutic component, that is, ASCs or SVF for skin rejuvenation to date. In contrast, facial lipofilling to restore loss of volume seems to be promising.


2019 ◽  
Vol 20 (7) ◽  
pp. 1618 ◽  
Author(s):  
Abeer Fayyad ◽  
Amir Khan ◽  
Sallam Abdallah ◽  
Sara Alomran ◽  
Khalid Bajou ◽  
...  

Obesity is a major risk for diabetes. Brown adipose tissue (BAT) mediates production of heat while white adipose tissue (WAT) function in the storage of fat. Roles of BAT in the treatment of obesity and related disorders warrants more investigation. Peroxisome proliferator activator receptor gamma (PPAR-γ) is the master regulator of both BAT and WAT adipogenesis and has roles in glucose and fatty acid metabolism. Adipose tissue is the major expression site for PPAR-γ. In this study, the effects of rosiglitazone on the brown adipogenesis and the association of MAPK and PI3K pathways was investigated during the in vitro adipogenic differentiation of telomerase transformed mesenchymal stromal cells (iMSCs). Our data indicate that 2 µM rosiglitazone enhanced adipogenesis by over-expression of PPAR-γ and C/EBP-α. More specifically, brown adipogenesis was enhanced by the upregulation of EBF2 and UCP-1 and evidenced by multilocular fatty droplets morphology of the differentiated adipocytes. We also found that rosiglitazone significantly activated MAPK and PI3K pathways at the maturation stage of differentiation. Overall, the results indicate that rosiglitazone induced overexpression of PPAR-γ that in turn enhanced adipogenesis, particularly browning adipogenesis. This study reports the browning effects of rosiglitazone during the differentiation of iMSCs into adipocytes in association with the activation of MAPK and PI3K signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document