Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: Enzymatic hydrolysis (part 1)

2011 ◽  
Vol 109 (2) ◽  
pp. 390-397 ◽  
Author(s):  
Meijuan Zeng ◽  
Eduardo Ximenes ◽  
Michael R. Ladisch ◽  
Nathan S. Mosier ◽  
Wilfred Vermerris ◽  
...  
2011 ◽  
Vol 109 (2) ◽  
pp. 398-404 ◽  
Author(s):  
Meijuan Zeng ◽  
Eduardo Ximenes ◽  
Michael R. Ladisch ◽  
Nathan S. Mosier ◽  
Wilfred Vermerris ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1640
Author(s):  
M.A. Martín-Lara ◽  
L. Chica-Redecillas ◽  
A. Pérez ◽  
G. Blázquez ◽  
G. Garcia-Garcia ◽  
...  

In this work, liquid hot water pretreatment (autohydrolysis) was used to improve enzymatic hydrolysis of a commonly consumed vegetable waste in Spain, Italian green pepper, to finally produce fermentable sugars. Firstly, the effect of temperature and contact time on sugar recovery during pretreatment (in insoluble solid and liquid fraction) was studied in detail. Then, enzymatic hydrolysis using commercial cellulase was performed with the insoluble solid resulting from pretreatment. The objective was to compare results with and without pretreatment. The results showed that the pretreatment step was effective to facilitate the sugars release in enzymatic hydrolysis, increasing the global sugar yield. This was especially notable when pretreatment was carried out at 180 °C for 40 min for glucose yields. In these conditions a global glucose yield of 61.02% was obtained. In addition, very low concentrations of phenolic compounds (ranging from 69.12 to 82.24 mg/L) were found in the liquid fraction from enzymatic hydrolysis, decreasing the possibility of fermentation inhibition produced by these components. Results showed that Italian green pepper is an interesting feedstock to obtain free sugars and prevent the enormous quantity of this food waste discarded annually.


2020 ◽  
Vol 112 ◽  
pp. 71-78
Author(s):  
Florentyna Akus-Szyblerg ◽  
Jan Szadkowski ◽  
Andrzej Antczak ◽  
Janusz Zawadzki

Changes in poplar (Populus trichocarpa) wood porous structure after liquid hot water (LHW) pretreatment. The aim of this research was to investigate the effect of applying different hydrothermal pretreatment conditions on the porous structure of poplar wood. Porosity is recognised as an important factor considering efficiency of an enzymatic hydrolysis as a step of bioethanol production. Native poplar wood as well as solid fractions after pretreatment performed at different temperatures (160 °C, 175 °C and 190 °C) were analysed. Porous structure was examined with an inverse size-exclusion chromatography (ISEC) method. Results indicated a significant development of the porous structure of the biomass with increasing porosity along with the growing temperature of the LHW process. The temperature of 190 °C was chosen as the most promising condition of poplar wood LHW pretreatment in terms of the efficiency of the subsequent steps of bioethanol production. The obtained results were consistent with the previous experimental data procured during analysis of the LHW pretreated poplar wood and its subsequent enzymatic hydrolysis yield.


2019 ◽  
Vol 33 (5) ◽  
pp. 4361-4368 ◽  
Author(s):  
Valeria Larnaudie ◽  
Mario Daniel Ferrari ◽  
Claudia Lareo

2007 ◽  
Vol 42 (6) ◽  
pp. 1003-1009 ◽  
Author(s):  
Cristóbal Cara ◽  
Manuel Moya ◽  
Ignacio Ballesteros ◽  
Ma José Negro ◽  
Alberto González ◽  
...  

2020 ◽  
Vol 110 ◽  
pp. 110-117
Author(s):  
Florentyna Akus-Szylberg ◽  
Andrzej Antczak ◽  
Janusz Zawadzki

Inhibitory compounds formation after liquid hot water (LHW) pretreatment of corn stover as an alternative to wood lignocellulosic feedstock for bioethanol production. Thus far, corn stover has been perceived as a promising lignocellulosic alternative to wood intended for bioethanol procurement, however it should be recognised also as a potential future component in a mixed biomass system. The aim of this research was to investigate the effect of applying different hydrothermal treatment conditions on the potential inhibitory compounds formation from corn stover. An analysis of selected inhibitory compounds formed after pretreatment performed at different temperatures (160°C, 175°C, 190°C and 205°C) was carried out. Furfural, simple sugars and lignin were some of the inhibitors examined with HPLC and UV-VIS spectrophotometric methods. Furthermore, the chemical composition of organic extracts obtained from native and LHW pretreated biomass was analyzed qualitatively with GC-MS method and inhibitory compounds like vanillin, sitosterol or syringol were detected. As a result of those investigations compared to enzymatic hydrolysis yield the temperature of 175°C was chosen as the most promising condition of corn stover LHW pretreatment in terms of the efficiency of the subsequent phases of bioethanol production.


Sign in / Sign up

Export Citation Format

Share Document