Autoclavable low cost serum-free cell culture media: The growth of established cell lines and production of Viruses

1976 ◽  
Vol 18 (3) ◽  
pp. 363-382 ◽  
Author(s):  
Leonard Keay
2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e17558-e17558
Author(s):  
Alba Martínez ◽  
Molly Buckley ◽  
Joel Berry ◽  
Rebecca Christian Arend

e17558 Background: Epithelial Ovarian Cancer (EOC) is the most common cause of death among gynecological malignancies. This is a result of the high rate of recurrence and chemo-resistance in EOC patients. Therefore, the development of new therapeutics is crucial. A major factor contributing to this is the lack of therapeutic candidates is lack of translational accuracy in preclinical models. Recently, 3-dimensional (3-D) models have aided in accurately recreating tumor biology. We have developed an EOC 3-D perfused bioreactor system that recapitulates EOC tumor biology and incorporates tumor biomechanical regulation. This model allows for us to more accurately predict the clinical response of new drug candidates, which aids in elimination of ineffective candidates prior to clinical trials. Methods: EOC cell lines (luciferase-taggedSKOV-3 and OVCAR-8) were embedded in a relevant extracellular matrix (ECM) and injected into a perfused, polydimethylsiloxane (PDMS) bioreactor. Microchannels were embedded in matrigel so that the cell culture media with or without chemotherapy could flow through the perfused PDMS to provide nutrient delivery and gas exchange enhancing viability and function of surrounding cells. The bioreactors were connected to a peristaltic pump that allowed for the cell culture media to perfuse over a 7-day period. We monitored cell viability using bioluminescence imaging (BLI), immunohistochemistry (IHC), and lactate dehydrogenase (LDH) release in media. Results: BLI showed a linear increase in SKOV-3 and OVCAR-8 cell growth over 7 days. These results were confirmed by IHC measuring the number of nucleated cells per micron2. Graphical representation of the region of interest (ROI) showed a high correlation between IHC staining of nucleated cells and BLI score. IHC analysis of PAX8 staining was positive and proved that the perfusion bioreactor system maintains EOC biology over time. In addition, our results suggest that the bioreactor is a suitable model for drug preclinical testing in both cell lines as well as in patients’ samples. Conclusions: Our preliminary results using the 3D EOC perfused, PDMS bioreactor model showed increased EOC cell growth overtime, while maintaining original EOC histology. Moreover, our results suggest that this model could provide a novel platform to study therapeutic interventions in EOC. Our ultimate goal is to implement ovarian cancer microenvironment components (e.g. immune cells) into bioreactor system to study different drug treatments to better determine drug candidate’s translational efficacy.


Author(s):  
Friedemann Hesse ◽  
Roland Wagner ◽  
Hermann Katinger ◽  
Holger Lübben ◽  
Juergen Vorlop ◽  
...  

2008 ◽  
Vol 89 (1) ◽  
pp. 232-244 ◽  
Author(s):  
Mónica Herrera ◽  
Ana Grande-Pérez ◽  
Celia Perales ◽  
Esteban Domingo

If we could rewind the tape of evolution and play it again, would it turn out to be similar to or different from what we know? Obviously, this key question can only be addressed by fragmentary experimental approaches. Twenty-two years ago, we described the establishment of BHK-21 cells persistently infected with foot-and-mouth disease virus (FMDV), a system that displayed as its major biological feature a coevolution of the cells and the resident virus in the course of persistence. Now we report the establishment of two persistently infected cell lines in parallel, starting with the same clones of FMDV and BHK-21 cells used 22 years ago. We have asked whether the evolution of the two newly established cell lines and of the earlier cell line would be similar or different. The main conclusions of the study are: (i) the basic behaviour characterized by virus–cell coevolution is similar in the three carrier cell lines, despite differences in some genetic alterations of FMDV; (ii) a strikingly parallel behaviour has been observed with the two newly established cell lines passaged in parallel, unveiling a deterministic virus behaviour during persistence; and (iii) selective RT-PCR amplifications have detected imbalances in the proportion of positive- versus negative-strand viral RNA, mediated by both viral and cellular factors. The results confirm coevolution of cells and virus as a major and reproducible feature of FMDV persistence in cell culture, and suggest that rapidly evolving viruses may constitute adequate test systems to probe the influence of historical contingency on evolutionary events.


2013 ◽  
Vol 394 (12) ◽  
pp. 1637-1648 ◽  
Author(s):  
Christoph Lipps ◽  
Tobias May ◽  
Hansjörg Hauser ◽  
Dagmar Wirth

Abstract In the first 50 years of cell culture, the development of new cell lines was mainly based on trial and error. Due to the understanding of the molecular networks of aging, senescence, proliferation, and adaption by mutation, the generation of new cell lines with physiologic properties has become more systematic. This endeavor has been supported by the availability of new technological achievements and increasing knowledge about the biology of cell differentiation and cell-cell communication. Here, we review some promising developments that are contributing toward this goal. These include molecular tools frequently used for the immortalization process. In addition to these broadly acting immortalization regimens, we focus on the developments of cell type-specific immortalization and on the methodologies of how to control the growth of newly established cell lines.


Sign in / Sign up

Export Citation Format

Share Document