scholarly journals Production of Butyrate and Branched Chain Amino Acid Catabolic Byproducts by CHO Cells in Fed‐batch Culture Enhances their Specific Productivity

Author(s):  
Cameron Harrington ◽  
Michaela Jacobs ◽  
Quentin Bethune ◽  
Taylor Kalomeris ◽  
Gregory W. Hiller ◽  
...  
Author(s):  
Cameron Harrington ◽  
Taylor Kalomeris ◽  
Michaela Jacobs ◽  
Gregory Hiller ◽  
Bhanu Chandra Mulukutla

Chinese hamster ovary (CHO) cells in fed-batch cultures produce several metabolic byproducts derived from amino acid catabolism, some of which accumulate to growth inhibitory levels. Controlling the accumulation of these byproducts has been shown to significantly enhance cell proliferation. Interestingly, some of these byproducts have physiological roles that go beyond inhibition of cell proliferation. In this study, we show that, in CHO cell fed-batch cultures, branched chain amino acid (BCAA) catabolism contributes to the formation of butyrate, a novel byproduct that is also a well-established specific productivity enhancer. Further, the other byproducts of BCAA catabolism, isovalerate and isobutyrate, which accumulate in CHO cell fed-batch cultures also enhance specific productivity. Additionally, the rate of production of these BCAA catabolic byproducts was negatively correlated with glucose uptake and lactate production rates. Limiting glucose supply to suppress glucose uptake and lactate production, like in case of fed-batch cultures employing HiPDOG technology, significantly enhances BCAA catabolic byproduct accumulation resulting in higher specific productivities.


2006 ◽  
Vol 73 (3) ◽  
pp. 750-755 ◽  
Author(s):  
Michael Stolz ◽  
Petra Peters-Wendisch ◽  
Helga Etterich ◽  
Tanja Gerharz ◽  
Robert Faurie ◽  
...  

ABSTRACT The amino acid l-serine is required for pharmaceutical purposes, and the availability of a sugar-based microbial process for its production is desirable. However, a number of intracellular utilization routes prevent overproduction of l-serine, with the essential serine hydroxymethyltransferase (SHMT) (glyA) probably occupying a key position. We found that constructs of Corynebacterium glutamicum strains where chromosomal glyA expression is dependent on P tac and lacI Q are unstable, acquiring mutations in lacI Q, for instance. To overcome the inconvenient glyA expression control, we instead considered controlling SHMT activity by the availability of 5,6,7,8-tetrahydrofolate (THF). The pabAB and pabC genes of THF synthesis were identified and deleted in C. glutamicum, and the resulting strains were shown to require folate or 4-aminobenzoate for growth. Whereas the C. glutamicum ΔsdaA strain (pserACB) accumulates only traces of l-serine, with the C. glutamicum ΔpabABCΔsdaA strain (pserACB), l-serine accumulation and growth responded in a dose-dependent manner to an external folate supply. At 0.1 mM folate, 81 mM l-serine accumulated. In a 20-liter controlled fed-batch culture, a 345 mM l-serine accumulation was achieved. Thus, an efficient and highly competitive process for microbial l-serine production is available.


Sign in / Sign up

Export Citation Format

Share Document