Stability‐indicating chromatographic and chemometric methods for environmentally benign determination of canagliflozin and its major degradation product; A comparative study and greenness assessment

2019 ◽  
Vol 33 (10) ◽  
Author(s):  
Aml A. Emam ◽  
Nada S. Abdelwahab
Author(s):  
Evagelia Tzanetou ◽  
Helen Karasali

Glyphosate [N-(phosphonomethyl) glycine] (GPS) is currently the most commonly applied herbicide worldwide. Given the widespread use of glyphosate, the investigation of the relationship between glyphosate and soil ecosystem is critical and has great significance for its valid application and environmental safety evaluation. However, although the occurrence of glyphosate residues in surface and groundwater is rather well documented, only few information are available for soils and even fewer for air. Due to this, the importance of developing methods that are effective and fast to determine and quantify glyphosate and its major degradation product, aminomethylphosphonic acid (AMPA), is emphasized. Based on its structure, the determination of this pesticide using a simple analytical method remains a challenge, a fact known as the “glyphosate paradox.” In this chapter a critical review of the existing literature and data comparison studies regarding the occurrence and the development of analytical methods for the determination of pesticide glyphosate in soil and air is performed.


2005 ◽  
Vol 88 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Mostafa A Shehata ◽  
Mohammad A El-Sayed ◽  
Mohammad G El-Bardicy ◽  
Mohammad F El-Tarras

Abstract A first-derivative spectrophotometric (1D) method and a derivative-ratio zero-crossing spectrophotometric (1DD) method were used to determine pyritinol dihydrochloride (I) in the presence of its precursor (II) and its degradation product (III) with 0.1N hydrochloric acid as a solvet. Linear relationships were obtained in the ranges of 6–22 μg/mL for the (1D) method and 6–20 μg/mL for the (1DD) method. By applying the proposed methods, it was possible to determine pyritinol dihydrochloride in its pure powdered form with an accuracy of 100.36 ± 1.497% (n = 9) for the (1D) method and an accuracy of 99.92 ± 1.172% (n = 8) for the (1DD) method. Laboratory-prepared mixtures containing different ratios of (I), (II), and (III) were analyzed, and the proposed methods were valid for concentrations of ≤10% (II) and ≤50% (III). The proposed methods were validated and found to be suitable as stability-indicating assay methods for pyritinol in pharmaceutical formulations.


2010 ◽  
Vol 3 (4) ◽  
pp. 221-227 ◽  
Author(s):  
Marianne Nebsen ◽  
Mohamed K. Abd El-Rahman ◽  
Maissa Y. Salem ◽  
Amira M. El-Kosasy ◽  
Mohamed G. El-Bardicy

Sign in / Sign up

Export Citation Format

Share Document