Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production
Latest Publications


TOTAL DOCUMENTS

13
(FIVE YEARS 13)

H-INDEX

1
(FIVE YEARS 1)

Published By Intechopen

9781789238273, 9781789238280

Author(s):  
Pasquale Avino ◽  
Ivan Notardonato ◽  
Mario Vincenzo Russo

Glyphosate is a pesticide widely used in agriculture, horticulture, and silviculture as well as around homes and gardens. It was introduced by Monsanto in the early 1970s, and it is a broad spectrum, nonselective, post-emergence herbicide that inhibits plants’ shikimic acid pathway. Glyphosate is considered as “difficult herbicide” in terms of trace analysis. It has low molecular weight, low volatility, thermal lability, and good water solubility. These properties cause problems in its extraction, purification, and detection. The determination often requires additional processes that may allow quantification by chromatographic methods. Several analytical procedures have been developed based on solid-phase extraction, ion-exchange chromatography, or matrix solid phase dispersion. Most published methods involve liquid extraction followed by clean-up. This review would like to revise the literature on this issue discussing the relevant chromatographic methods reported in the literature in terms of analytical parameters for analyzing such compound in food chain.


Author(s):  
Evagelia Tzanetou ◽  
Helen Karasali

Glyphosate [N-(phosphonomethyl) glycine] (GPS) is currently the most commonly applied herbicide worldwide. Given the widespread use of glyphosate, the investigation of the relationship between glyphosate and soil ecosystem is critical and has great significance for its valid application and environmental safety evaluation. However, although the occurrence of glyphosate residues in surface and groundwater is rather well documented, only few information are available for soils and even fewer for air. Due to this, the importance of developing methods that are effective and fast to determine and quantify glyphosate and its major degradation product, aminomethylphosphonic acid (AMPA), is emphasized. Based on its structure, the determination of this pesticide using a simple analytical method remains a challenge, a fact known as the “glyphosate paradox.” In this chapter a critical review of the existing literature and data comparison studies regarding the occurrence and the development of analytical methods for the determination of pesticide glyphosate in soil and air is performed.


Author(s):  
Fei-Ying Yang ◽  
Wei-Yi He ◽  
Min-Sheng You

Research regarding the distribution of metabolites is a vital aspect of insect molecular biology. However, current approaches (e.g., liquid chromatography-mass spectrometry or immunofluorescence) have cons like requirement of massive tissues, low efficiency, and complicated operating processes. As an emerging technology, mass spectrometry imaging (MSI) can visualize the spatiotemporal distribution of molecules in biological samples without labeling. In this chapter, we retrospect the major types of in situ measurement by MSI, and the application of MSI for investigating insect endogenous and exogenous metabolites and monitoring the dynamic changes of metabolites involved with the interactions between insects and plants. Future studies that combine MSI with other genetic tools can facilitate to better explore the underlying mechanisms concerning insect physiology and metabolism.


Author(s):  
Ankica Sarajlić ◽  
Emilija Raspudić ◽  
Zdenko Lončarić ◽  
Marko Josipović ◽  
Ivana Majić

European corn borer (ECB) creates tunnels inside the plant stalks, causing damage, which could significantly decrease yield loss. This study aimed to determine the relationship between damage caused by ECB larval feeding and different irrigation and nitrogen fertilization rates on different maize genotypes. We conducted a field experiment in Croatia from 2012 to 2014. Increased plant nitrogen adsorption was observed under irrigation only in drought years, and it was decreased in optimal or extremely wet years. We found a weak or a moderate relationship between ECB damage and nitrogen concentration, but the greatest ECB damage was in all years recorded in treatments with the highest fertilization rates. However, the highest plant nitrogen concentration was observed in the hybrid with the lowest damage from ECB larvae. The maize damage caused by ECB larval feeding was negatively affected by high plant nitrogen concentrations only when plants were under drought stress. Nitrogen uptake was increased in irrigated plots. We did not find a strong relationship between the C/N ratio or irrigation and intensity of ECB damage. In 2012, when the narrowest C/N ratio was calculated, the greatest damage by ECB was measured. Further studies are needed since we detected the significant impact of drought on intensive ECB larval feeding.


Author(s):  
Sladjan Stankovic ◽  
Miroslav Kostic ◽  
Igor Kostic ◽  
Slobodan Krnjajic

Food production is challenged by different factors: climate changes, market competitiveness, food safety, public demands, environmental challenges, new and invasive pests, etc. Intensive food production must be protected against pests, which is nowadays impossible with traditional techniques. The use of eco-friendly biopesticides based on essential oils (EOs), plant extracts (PE), and inert dusts appears to be a complementary or alternative methodology to the conventional chemically synthesized insecticides. The use of such biopesticides reduces the adverse pesticide effects on human health and environment. Biopesticides can exhibit toxic, repellent, and antifeeding effects. Development of bio-insecticides tackles the problem of food safety and residues in fresh food. Innovation within this approach is the combination of several types of active ingredients with complementary effects. Essential oils are well-known compounds with insecticide or repellent activities. New approaches, tools, and products for ecological pest management may substantially decrease pesticide use, especially in fruit and vegetable production. A win-win strategy is to find an appropriate nature-based compound having impact on pests, together with pesticide use, when unavoidable. Toxic or repellent activity could be used for pest control in the field conditions, as well as attractiveness of some compounds for mass trapping, before pests cause significant economic damage.


Author(s):  
William James Grichar ◽  
Peter A. Dotray ◽  
Derald Ray Langham

Harvest aids are traditionally used to desiccate weeds to improve crop quality and harvest efficiency. Field studies were conducted in Texas to determine the effect of harvest aids (glyphosate, diquat-dibromide, glufosinate-ammonium, and carfentrazone-ethyl) on sesame drydown and yield. The objective was to identify one or more harvest aids that could (1) accelerate drydown, (2) burn-down green weeds, (3) even up a field with varying levels of drydown, (4) stop regrowth, (5) stop vivipary, and (6) prepare to plant a new crop. Other than diquat-dibromide, the herbicides were chosen based on the effect on weeds in other crops. The plan was to apply the herbicides 1 week before physiological maturity (PM), at PM, and 1 week after PM. However, sesame maturity is very sensitive to ground moisture, ambient temperature, and relative humidity. The weather was different in all trials and some stages could not be completed. In two cases, the trials had to be abandoned; however, certain patterns emerged. All the herbicides accelerated drydown compared to the untreated check. Diquat-dibromide and glufosinate-ammonium dried sesame faster than glyphosate and carfentrazone-ethyl. The higher rates of the herbicide dried down the sesame faster than the low rate. Although there were some differences in yields across the three application periods, there was no consistent pattern.


Author(s):  
Tamanreet Kaur ◽  
Mandeep Kaur

Integrated pest management is an effective and environmentally sensitive approach for pest management. It plays an important role in sustainable agriculture and quality of food production by providing maximum economic yield to the farmer and also improving human health and environment. Recent developments in agricultural technology, modern communication tools, changing consumer trends, increased awareness for sustainably produced food systems, and globalization of trade and travel, have necessitated the need for the IPM paradigm as appropriate for modern times. Although the concept of integrated pest management originated almost 60 years ago, currently integrated pest management is a robust paradigm of pest control around the globe. This chapter reviews the history of integrated pest management, its main principles, and components of integrated pest management such as host plant resistance, cultural control, behavioral control, mechanical/physical control, biological control, and chemical control.


Author(s):  
Wael M. ElSayed ◽  
Shahenda Abu ElEla ◽  
Koji Nakamura

A study was conducted on assemblies of various orthopteran species from distinct habitats in the Satoyama region, Kanazawa City, Ishikawa Prefecture, Japan, and a total of 50 distinct orthopteran species were registered. These species were represented by 10 families and were belonged to 17 subfamilies and 27 tribes. Results based on stereo-microscopic examination of the mandibular morphology and the analysis of gut contents suggested seven proposed feeding groups for these collected orthopteran species. Among the examined subfamilies, family Tettigoniidae proved to be the most diverse in mandibular structure and four feeding groups were assigned. This was followed by family Acrididae, which showed three feeding groups. Other families contained only single feeding group. It was noted that only five species, from family Acrididae, were graminivorous with their mandibles characterized by comparatively very short incisors and relatively wide molar regions. The analysis of gut contents of these five species proved to contain more than 80% monocotyledonous plant species. Predation and scavenging as feeding habits were also recorded in some orthopteran species.


Author(s):  
Mamta Choudhary ◽  
Binod Kumar Choudhary ◽  
Ratan Chandra Ghosh

Swine pasteurellosis is usually observed in descript as well as nondescript pigs imparting in huge economic losses to the pig producers. The disease is characterized by pyrexia, dullness, staggering gait, anorexia, serous nasal discharge and dyspnoea. Case fatality rate may as high as 95% in adult animals and 100% in piglets. Typical lesions of oedematous swellings may remarkably visible in the pharyngeal region, these swellings spread to the ventral cervical region and brisket of pigs. Gross lesions include severe pneumonia and haemorrhages in lungs, petechial haemorrhages on serous membranes and other visceral organs. Lymph nodes usually get enlarged, oedematous and haemorrhagic. The blood smears from heart blood and tissue impression smears reveal teaming numbers of bipolar organisms indicating the presence of Pasteurella spp., the etiological organism. The bacteriological isolation and characterization of causative agent should be ruled out to identify by Gram’ staining for purity and bipolar morphology and biochemical characterization of the organisms. Molecular characterization necessitates to confirm Pasteurella multocida along with capsular types of the organism. Histopathological examination of lungs usually reveals typical fibrinous bronchopneumonia, multifocal suppuration and pleural thickening. Heart of some pigs may show presence of thrombi, haemorrhages and necrosed myocardium.


Author(s):  
Ricardo Alcántara-de la Cruz ◽  
Guilherme Moraes de Oliveira ◽  
Leonardo Bianco de Carvalho ◽  
Maria Fátima das Graças Fernandes da Silva

Brazil is a large producer and exporter of crops in global terms. Weeds may be responsible for ~14% of crop losses, depending on the crop system. Herbicides occupy 58% of the Brazilian pesticide market; however, the continuous use of these products and the high selection pressure have led to the emergence of weeds resistant to herbicides. Today, there are 51 weed species reported as being resistant to herbicides in Brazil, of which 17 involves cross and multiple-resistance. Acetolactate synthase (ALS), acetyl coenzyme A carboxylase (ACCase) and 5-enolpiruvylshikimate-3-phosphate synthase (EPSPs) inhibitors are the herbicidal groups with the most resistance cases. Soybean, corn, rice, wheat and cotton present 30, 12, 10, 9 and 8 cases, respectively, occurring mainly in herbicide-resistant crop fields from the Southern and Central West regions of the country. To better understand the dimensions of herbicide resistance, in this chapter, we will explore the size of agricultural activity in Brazil, the pesticide market and the use of herbicides in the main crops. In addition, the agronomic, scientific-technical and economic aspects that have contributed, directly or indirectly, to the selection of resistant weeds will be discussed in order to have an overview of the economic impact of herbicide resistance management.


Sign in / Sign up

Export Citation Format

Share Document