Hypoxia preconditioned mesenchymal stem cell‐derived exosomes induce ex vivo expansion of umbilical cord blood hematopoietic stem cells CD133+ by stimulation of Notch signalling pathway

2021 ◽  
Author(s):  
Vahid Niazi ◽  
Soudeh Ghafouri‐Fard ◽  
Javad Verdi ◽  
Shabnam Jeibouei ◽  
Farshid Karami ◽  
...  
Hematology ◽  
2005 ◽  
Vol 2005 (1) ◽  
pp. 377-383 ◽  
Author(s):  
William Tse ◽  
Mary J. Laughlin

Abstract Allogeneic hematopoietic stem cell transplantation is a life-saving procedure for hematopoietic malignancies, marrow failure syndromes, and hereditary immunodeficiency disorders. However, wide application of this procedure is limited by availability of suitably HLA-matched adult donors. Umbilical cord blood (UCB) has being increasingly used as an alternative hematopoietic stem cell source for these patients. To date, over 6000 UCB transplant procedures in children and adults have been performed worldwide using UCB donors. Broader use of UCB for adult patients is however limited by the available infused cell dose. This has prompted intensive research on ex vivo expansion of UCB stem cells and UCB graft-engineering including accessory cells able to improve UCB engraftment and reconstitution and for tissue regenerative potential. Recently, two large European and North American retrospective studies demonstrated that UCB is an acceptable alternative source of hematopoietic stem cells for adult recipients who lack HLA-matched adult donors. UCB is anticipated to address needs in both transplantation and regenerative medicine fields. It has advantages of easy procurement, no risk to donors, low risk of transmitting infections, immediate availability and immune tolerance allowing successful transplantation despite HLA disparity.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4747-4747
Author(s):  
Mark Lee ◽  
Heesun Hong ◽  
Sung Yong Kim ◽  
Yo Han Cho ◽  
So Young Yoon

Abstract Background and Objectives Mesenchymal stem cells plays an important role in the hematopoietic stem cell engraftment condition with SDF-1 (CXCL12)-CXCR4 signaling and in their homing in various tissues. In this study, we evaluated that the regulation of homing efficiency for mesenchymal stem cells to support ex vivo expansion of hematopoietic stem cells from umbilical cord blood. Methods We investigated the expression of CXCR4 and Stromal-Derived Factor-1 (SDF-1) in cocultured mesenchymal stem cell with umbilical cord blood-derived CD34-positive cell, which stimulated with granulocyte macrophage-colony stimulating factor (GM-CSF) and stem cell factor (SCF) cytokine. Results In this study, we evaluated that coculturing of SDF-1+ mesenchymal stem cells with stimulated CD34+ cells significantly increased the expression of CD34, CD45, and CD19 for myeloid surface marker and intracellular CXCR4 within a few hours as compared with culturing of CD34-positive cells alone or with SDF-1− mesenchymal stem cells or untreated mesenchymal stem cells by Flow cytometre. In the result of stimulation for 48 hours with various cytokines in CD34-positive cells, CXCR4 gene and ERK-1,2 protein up-regulated, and increased in vitro migration capacity of cocultured SDF-1+ mesenchymal stem cell with CD34+ cells as examined by quantitative RT-PCR of human GAPDH. To enhance homing effect by mesenchymal stem cell, we maintained expanded mesenchymal stem cells for up to 5–10 passages with monitoring of the expression of various tissue surface antigens, such as skeletal muscle, neural, liver, and endothelial cells. SDF-1+ mesenchymal stem cells induced the homing of cellular products of stimulated cord blood-derived CD34-positive cells for 10 days. Moreover, the tranfected SDF-1+ cells with a green fluorescent protein gene using lentivirus maintained their capacities of protein release and homing in culture system. SDF-1− mesenchymal stem cells reduced CXCR4 expression in cocultured CD34-positive cells. Conclusions: These results demonstrate that the role of the SDF-1/CXCR4 axis is an important rold in the regulation of homing and engraftment of mesenchymal and hematopoietic stem cells. SDF-1+ mesenchymal stem cells have clinical potential to regulate homing and short-term engraftment for hematopoietic stem cell transplantation.


2017 ◽  
Vol 39 (3) ◽  
pp. 164-170 ◽  
Author(s):  
T O Kalynychenko

Significant progress in the promotion of procedural technologies associated with the transplantation of hematopoietic stem cells caused a rapid increase in activity. The exchange of hematopoietic stem cells for unrelated donor transplantations is now much easier due to the relevant international professional structures and organizations established to support cooperation and standard setting, as well as rules for the functioning of both national donor registries and cord blood banks. These processes are increasing every year and are contributing to the outpacing rates of development in this area. Products within their country should be regulated by the competent government authorities. This study analyzes the work of international and national levels of support for transplantation activity in the field of unrelated hematopoietic stem cell transplantation, the standardization order of technologies, as well as data that justify the need to create a network of donated umbilical cord blood banks in Ukraine as a factor in the development of allogeneic transplantation. This will promote the accessibility of international standards for the treatment of serious diseases for Ukrainian citizens.


Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 102-110 ◽  
Author(s):  
Craig Dorrell ◽  
Olga I. Gan ◽  
Daniel S. Pereira ◽  
Robert G. Hawley ◽  
John E. Dick

Abstract Current procedures for the genetic manipulation of hematopoietic stem cells are relatively inefficient due, in part, to a poor understanding of the conditions for ex vivo maintenance or expansion of stem cells. We report improvements in the retroviral transduction of human stem cells based on the SCID-repopulating cell (SRC) assay and analysis of Lin− CD34+CD38−cells as a surrogate measure of stem cell function. Based on our earlier study of the conditions required for ex vivo expansion of Lin−CD34+ CD38− cells and SRC, CD34+–enriched lineage–depleted umbilical cord blood cells were cultured for 2 to 6 days on fibronectin fragment in MGIN (MSCV-EGFP-Neo) retroviral supernatant (containing 1.5% fetal bovine serum) and IL-6, SCF, Flt-3 ligand, and G-CSF. Both CD34+CD38− cells (20.8%) and CFC (26.3%) were efficiently marked. When the bone marrow of engrafted NOD/SCID mice was examined, 75% (12/16) contained multilineage (myeloid and B lymphoid) EGFP+ human cells composing as much as 59% of the graft. Half of these mice received a limiting dose of SRC, suggesting that the marked cells were derived from a single transduced SRC. Surprisingly, these culture conditions produced a large expansion (166-fold) of cells with the CD34+CD38− phenotype (n = 20). However, there was no increase in SRC numbers, indicating dissociation between the CD34+CD38− phenotype and SRC function. The underlying mechanism involved apparent downregulation of CD38 expression within a population of cultured CD34+CD38+ cells that no longer contained any SRC function. These results suggest that the relationship between stem cell function and cell surface phenotype may not be reliable for cultured cells. (Blood. 2000;95:102-110)


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 35-35 ◽  
Author(s):  
Ewa K. Zuba-Surma ◽  
Izabela Klich ◽  
Marcin Wysoczynski ◽  
Nicholas J Greco ◽  
Mary J. Laughlin ◽  
...  

Abstract Abstract 35 Recently, we identified in umbilical cord blood (UCB) a population of very small embryonic/epiblast-like (VSEL) stem cells (Leukemia 2007;21:297–303) that are i) smaller than erythrocytes, ii) SSEA-4+/Oct-4+/CD133+/CXCR4+/Lin−/CD45−, iii) respond to SDF-1 gradient and iv) possess large nuclei containing primitive euchromatin. We have demonstrated in vitro that UCB-derived VSELs did not reveal hematopoietic activity freshly after isolation, but grow hematopoietic colonies following co-culture/activation over OP-9 cells. To investigate the hierarchy of UCB-derived, CD45 negative VSELs, we employed staining with Aldefluor - detecting aldehyde dehydrogenase (ALDH), the enzyme expressed in primitive hematopoietic cells. Subsequently, we sorted CD45−/CD133+/ALDHhigh and CD45−/CD133+/ALDHlow sub-fractions of VSELs from UCB samples and established that freshly sorted from UCB VSELs in contrast to sorted CD45+/ CD133+/ALDHhigh and CD45+/CD133+/ALDHlow hematopoietic stem cells (HSC) did not grow colonies in vitro. However, when CD45− VSELs were activated/expanded over OP-9 stroma cells, they exhibit hematopoietic potential and grew in routine methylcellulose cultures hematopoietic colonies composed of CD45+ cells. Interestingly, while CD45−/CD133+/ALDHhigh VSELs gave raise to hematopoietic colonies after the first replating, the formation of colonies by CD45−/CD133+/ALDHlow VSELs was somehow delayed, what suggest that they needed more time to acquire hematopoietic commitment. Thus our in vitro data indicate that both populations of CD45− cells may acquire hematopoietic potential; however hematopoietic specification is delayed for CD45−/CD133+/ALDHlow cells, suggesting their more primitive nature. In parallel, real time PCR analysis confirmed that while freshly isolated CD45−/CD133+/ALDHhigh VSELs express more hematopoietic transcripts (e.g., c-myb, 80.2±27.4 fold difference), CD45−/CD133+/ALDHlow exhibit higher levels of pluripotent stem cell markers (e.g., Oct-4, 119.5±15.5 fold difference as compared to total UCB mononuclear cells) (Figure 1 panel A). Next hematopoietic potential of UCB-derived VSELs was tested in vivo after transplantation into NOD/SCID mice (Figure 1 panel B and C). We noticed that both CD45−/CD133+/ALDHhigh and CD45−/CD133+/ALDHlow VSELs, give rise to human lympho-hematopoietic chimerism in lethally irradiated NOD/SCID mice as assayed 4–6 weeks after transplantation. The level of human hematopoietic CD45+ cells in murine peripheral blood (PB), bone marrow (BM) and spleen (SP) were comparable for both transplanted UCB-VSELs fractions - 7.1±2.9% (PB), 23.2±0.2% (SP) and 25.2±1.0% (BM). In conclusion, our data suggest that freshly isolated very small CD45 negative UCB-VSELs are depleted from clonogeneic progenitors, however they are highly enriched for primitive HSC. Based on our in vitro and in vivo data we postulate following hierarchy of hematopoietic stem cells in UCB (from most primitive to more differentiated) i) CD45−/CD133+/ALDHlow, ii) CD45−/CD133+/ALDHhigh , iii) CD45+/CD133+/ALDHlow and iv) CD45−/CD133+/ALDHhigh. We also postulate that as we have already shown for murine BM-derived VSELs, human UCB-derived CD45 negative VSELs correspond to a population of most primitive long term repopulating HSC (LT-HSC). Of note, we also found that currently employed, routine UCB processing strategies may lead up to ∼50% unwanted loss of these small cells that are endowed with such remarkable hematopoietic activity! Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document