The relationship between lower neck shear force and facet joint kinematics during automotive rear impacts

2011 ◽  
Vol 24 (3) ◽  
pp. 319-326 ◽  
Author(s):  
Brian D. Stemper ◽  
Narayan Yoganandan ◽  
Frank A. Pintar ◽  
Dennis J. Maiman
Author(s):  
J Latchford ◽  
E C Chirwa ◽  
T Chen ◽  
M Mao

Car-rear-impact-induced cervical spine injuries present a serious burden on society and, in response, seats offering enhanced protection have been introduced. Seats are evaluated for neck protection performance but only at one specific backrest angle, whereas in the real world this varies greatly owing to the variation in occupant physique. Changing the backrest angle modifies the seat geometry and thereby the nature of its interaction with the occupant. Low-velocity rear-impact tests on a BioRID II anthropomorphic test dummy (ATD) have shown that changes in backrest angle have a significant proportionate effect on dummy kinematics. A close correlation was found between changes in backrest angle and the responses of neck injury predictors such as lower neck loading and lower neck shear but not for the neck injury criterion NICmax. Torso ramping was evident, however, with negligible effect in low-velocity impacts. The backrest angle ranged from 20° to 30° whereas the BioRID II spine was adapted to a range from 20° to 26.5°. Nevertheless, in general, instrumentation outputs correlated well, indicating that this ATD could be used for evaluating seats over a 20–30° range rather than solely at 25° as required by current approval test specifications.


Author(s):  
M. A Corrales ◽  
D. S Cronin

The increased incidence of injury demonstrated in epidemiological data for the elderly population, and females compared to males, has not been fully understood in the context of the biomechanical response to impact. A contributing factor to these differences in injury risk could be the variation in geometry between young and aged persons and between males and females. In this study, a new methodology, coupling a CAD and a repositioning software, was developed to reposture an existing Finite element neck while retaining a high level of mesh quality. A 5th percentile female aged neck model (F0575YO) and a 50th percentile male aged neck model (M5075YO) were developed from existing young (F0526YO and M5026YO) neck models (Global Human Body Models Consortium v5.1). The aged neck models included an increased cervical lordosis and an increase in the facet joint angles, as reported in the literature. The young and the aged models were simulated in frontal (2, 8, and 15 g) and rear (3, 7, and 10 g) impacts. The responses were compared using head and relative facet joint kinematics, and nominal intervertebral disc shear strain. In general, the aged models predicted higher tissue deformations, although the head kinematics were similar for all models. In the frontal impact, only the M5075YO model predicted hard tissue failure, attributed to the combined effect of the more anteriorly located head with age, when compared to the M5026YO, and greater neck length relative to the female models. In the rear impacts, the F0575YO model predicted higher relative facet joint shear compared to the F0526YO, and higher relative facet joint rotation and nominal intervertebral disc strain compared to the M5075YO. When comparing the male models, the relative facet joint kinematics predicted by the M5026YO and M5075YO were similar. The contrast in response between the male and female models in the rear impacts was attributed to the higher lordosis and facet angle in females compared to males. Epidemiological data reported that females were more likely to sustain Whiplash Associated Disorders in rear impacts compared to males, and that injury risk increases with age, in agreement with the findings in the present study. This study demonstrated that, although the increased lordosis and facet angle did not affect the head kinematics, changes at the tissue level were considerable (e.g., 26% higher relative facet shear in the female neck compared to the male, for rear impact) and relatable to the epidemiology. Future work will investigate tissue damage and failure through the incorporation of aged material properties and muscle activation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huilin Cheng ◽  
Sumin Song ◽  
Gap-Don Kim

AbstractTo evaluate the relationship between muscle fiber characteristics and the quality of frozen/thawed pork meat, four different muscles, M. longissimus thoracis et lumborum (LTL), M. psoas major (PM), M. semimembranosus (SM), and M. semitendinosus (ST), were analyzed from twenty carcasses. Meat color values (lightness, redness, yellowness, chroma, and hue) changed due to freezing/thawing in LTL, which showed larger IIAX, IIX, and IIXB fibers than found in SM (P < 0.05). SM and ST showed a significant decrease in purge loss and an increase in shear force caused by freezing/thawing (P < 0.05). Compared with LTL, SM contains more type IIXB muscle fibers and ST had larger muscle fibers I and IIA (P < 0.05). PM was the most stable of all muscles, since only its yellowness and chroma were affected by freezing/thawing (P < 0.05). These results suggest that pork muscle fiber characteristics of individual cuts must be considered to avoid quality deterioration during frozen storage.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Hao Wang ◽  
Zhiying Lv ◽  
Hongyu Qin ◽  
Jianwei Yue ◽  
Jianwei Zhang

Antislide piles are set in the Zhangjiawan landslide area, where the general features of the bedrock below the slip surface include upper weak and lower hard strata. Based on a site investigation, the horizontal displacement of the antislide pile head is 14.8 cm, which is not conducive to the stability of the landslide. In the study, a displacement calculation method for the pile under trapezoidal load is proposed for a colluvial landslide controlling. Furthermore, factors affecting the deformation and internal forces of the pile were also studied. The results indicated that (1) when the embedded length of an antislide pile increases, the horizontal displacement on the pile and maximum absolute shear force decrease, while the bending moment of the pile exhibits opposite trends; (2) the relationship between maximum shear force and maximum bending moment is linear with increasing driving force of landslide; and (3) increase in the ratio of the driving force between the pile head and slip surface (q0/q1) steadily increases the horizontal displacement of the pile. The relationship between the distribution of the driving force (q0/q1) and the reasonable embedded length of a pile is a quadratic function, which can be used to determine the reasonable embedded length of a pile under the action of rectangular or triangular loads. It is very useful to use the above method to guide the design of antislide piles in similar areas.


1999 ◽  
Vol 1999 ◽  
pp. 12-12
Author(s):  
M.J. Van Oeckel ◽  
N. Warnants ◽  
Ch.V. Boucqué

The tenderness of pork is one of the most important quality attributes to the consumer. Since it is very time-consuming and costly to evaluate tenderness by taste panel, Warner-Bratzler shear force (WBSF) is often used as a measure for meat tenderness (Boccard et al., 1981). However, the WBSF method gives a value for the maximal force needed to shear a cylindrical core of cooked meat, while the tenderness perception by the consumer is a result of the biting and chewing experience of grilled or fried meat. Moreover, this method is originally designed for the assessment of beef tenderness. The objective of this study was to evaluate modifications to the WBSF method to improve the correlation with pork tenderness.


Meat Science ◽  
2017 ◽  
Vol 126 ◽  
pp. 18-21 ◽  
Author(s):  
Colin P. Starkey ◽  
Geert H. Geesink ◽  
Remy van de Ven ◽  
David L. Hopkins

1999 ◽  
Vol 8 (5) ◽  
pp. 396-401 ◽  
Author(s):  
Atsushi Fujiwara ◽  
Kazuya Tamai ◽  
Minoru Yamato ◽  
Howard S. An ◽  
Hiroyuki Yoshida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document