scholarly journals Role of CD19 and specific KIT‐D816 on risk stratification refinement in t(8;21) acute myeloid leukemia induced with different cytarabine intensities

2020 ◽  
Author(s):  
Biao Wang ◽  
Bin Yang ◽  
Yun Ling ◽  
Jihong Zhang ◽  
Xiaoying Hua ◽  
...  
2019 ◽  
Vol XIV (1) ◽  
Author(s):  
A.M. Radzhabova ◽  
S.V. Voloshin ◽  
I.S. Martynkevich ◽  
A.A. Kuzyaeva ◽  
V.A. Shuvaev ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yiyi Yao ◽  
Fenglin Li ◽  
Jiansong Huang ◽  
Jie Jin ◽  
Huafeng Wang

AbstractDespite the advances in intensive chemotherapy regimens and targeted therapies, overall survival (OS) of acute myeloid leukemia (AML) remains unfavorable due to inevitable chemotherapy resistance and high relapse rate, which mainly caused by the persistence existence of leukemia stem cells (LSCs). Bone marrow microenvironment (BMM), the home of hematopoiesis, has been considered to play a crucial role in both hematopoiesis and leukemogenesis. When interrupted by the AML cells, a malignant BMM formed and thus provided a refuge for LSCs and protecting them from the cytotoxic effects of chemotherapy. In this review, we summarized the alterations in the bidirectional interplay between hematopoietic cells and BMM in the normal/AML hematopoietic environment, and pointed out the key role of these alterations in pathogenesis and chemotherapy resistance of AML. Finally, we focused on the current potential BMM-targeted strategies together with future prospects and challenges. Accordingly, while further research is necessary to elucidate the underlying mechanisms behind LSC–BMM interaction, targeting the interaction is perceived as a potential therapeutic strategy to eradicate LSCs and ultimately improve the outcome of AML.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jun Li ◽  
Zheng Ge

Abstract Background Acute myeloid leukemia (AML) remains one of the most common hematological malignancies, posing a serious challenge to human health. HSPA8 is a chaperone protein that facilitates proper protein folding. It contributes to various activities of cell function and also is associated with various types of cancers. To date, the role of HSPA8 in AML is still undetermined. Methods In this study, public datasets available from the TCGA (Cancer Genome Atlas) and GEO (Gene Expression Omnibus) were mined to discover the association between the expression of HSPA8 and clinical phenotypes of CN-AML. A series of bioinformatics analysis methods, including functional annotation and miRNA-mRNA regulation network analysis, were employed to investigate the role of HSPA8 in CN-AML. Results HSPA8 was highly expressed in the AML patients compared to the healthy controls. The high HSPA8 expression had lower overall survival (OS) rate than those with low HSPA8 expression. High expression of HSPA8 was also an independent prognostic factor for overall survival (OS) of CN-AML patients by multivariate analysis. The differential expressed genes (DEGs) associated with HSPA8 high expression were identified, and they were enriched PI3k-Akt signaling, cAMP signaling, calcium signaling pathway. HSPA8 high expression was also positively associated with micro-RNAs (hsa-mir-1269a, hsa-mir-508-3p, hsa-mir-203a), the micro-RNAs targeted genes (VSTM4, RHOB, HOBX7) and key known oncogenes (KLF5, RAN, and IDH1), and negatively associated with tumor suppressors (KLF12, PRKG1, TRPS1, NOTCH1, RORA). Conclusions Our research revealed HSPA8 as a novel potential prognostic factor to predict the survival of CN-AML patients. Our data also revealed the possible carcinogenic mechanism and the complicated microRNA-mRNA network associated with the HSPA8 high expression in AML.


2016 ◽  
Vol 44 (9) ◽  
pp. S65 ◽  
Author(s):  
David Corrigan ◽  
Larry Luchsinger ◽  
Hans Snoeck

2011 ◽  
Vol 2 (5) ◽  
pp. 585-592 ◽  
Author(s):  
B. Salvatori ◽  
I. Iosue ◽  
N. Djodji Damas ◽  
A. Mangiavacchi ◽  
S. Chiaretti ◽  
...  

2017 ◽  
Vol 35 (9) ◽  
pp. 934-946 ◽  
Author(s):  
Lars Bullinger ◽  
Konstanze Döhner ◽  
Hartmut Döhner

In recent years, our understanding of the molecular pathogenesis of myeloid neoplasms, including acute myeloid leukemia (AML), has been greatly advanced by genomics discovery studies that use novel high-throughput sequencing techniques. AML, similar to most other cancers, is characterized by multiple somatically acquired mutations that affect genes of different functional categories, a complex clonal architecture, and disease evolution over time. Patterns of mutations seem to follow specific and temporally ordered trajectories. Mutations in genes encoding epigenetic modifiers, such as DNMT3A, ASXL1, TET2, IDH1, and IDH2, are commonly acquired early and are present in the founding clone. The same genes are frequently found to be mutated in elderly individuals along with clonal expansion of hematopoiesis that confers an increased risk for the development of hematologic cancers. Furthermore, such mutations may persist after therapy, lead to clonal expansion during hematologic remission, and eventually lead to relapsed disease. In contrast, mutations involving NPM1 or signaling molecules (eg, FLT3, RAS) typically are secondary events that occur later during leukemogenesis. Genetic data are now being used to inform disease classification, risk stratification, and clinical care of patients. Two new provisional entities, AML with mutated RUNX1 and AML with BCR- ABL1, have been included in the current update of the WHO classification of myeloid neoplasms and AML, and mutations in three genes— RUNX1, ASXL1, and TP53—have been added in the risk stratification of the 2017 European LeukemiaNet recommendations for AML. Integrated evaluation of baseline genetics and assessment of minimal residual disease are expected to further improve risk stratification and selection of postremission therapy. Finally, the identification of disease alleles will guide the development and use of novel molecularly targeted therapies.


Therapy ◽  
2021 ◽  
Vol 4_2021 ◽  
pp. 41-47
Author(s):  
Vinnitskaya A.B. Vinnitskaya ◽  
Svitich O.A. Svitich ◽  
Golenkov A.K. Golenkov ◽  
Klinushkina E.F. Klinushkina ◽  
Zaitseva T.A. Zaitseva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document