Synthetic Antibody Mimics Based on Cancer‐Targeting Immunostimulatory Peptides

ChemBioChem ◽  
2020 ◽  
Author(s):  
Dante Descalzi‐Montoya ◽  
Rachel A. Montel ◽  
Keith Smith ◽  
Eugenia Dziopa ◽  
Andrieh Darwich ◽  
...  
2001 ◽  
Vol 28 (5N) ◽  
pp. 115-124 ◽  
Author(s):  
Shao-Chun Wang ◽  
Mien-Chie Hung

2021 ◽  
Vol 33 (22) ◽  
pp. 2170173
Author(s):  
Tae Woog Kang ◽  
In‐Jun Hwang ◽  
Sin Lee ◽  
Su‐Ji Jeon ◽  
Chanhee Choi ◽  
...  
Keyword(s):  

2021 ◽  
Vol 7 (6) ◽  
pp. 439
Author(s):  
Tecla Ciociola ◽  
Walter Magliani ◽  
Tiziano De Simone ◽  
Thelma A. Pertinhez ◽  
Stefania Conti ◽  
...  

It has been previously demonstrated that synthetic antibody-derived peptides could exert a significant activity in vitro, ex vivo, and/or in vivo against microorganisms and viruses, as well as immunomodulatory effects through the activation of immune cells. Based on the sequence of previously described antibody-derived peptides with recognized antifungal activity, an in silico analysis was conducted to identify novel antifungal candidates. The present study analyzed the candidacidal and structural properties of in silico designed peptides (ISDPs) derived by amino acid substitutions of the parent peptide KKVTMTCSAS. ISDPs proved to be more active in vitro than the parent peptide and all proved to be therapeutic in Galleria mellonella candidal infection, without showing toxic effects on mammalian cells. ISDPs were studied by circular dichroism spectroscopy, demonstrating different structural organization. These results allowed to validate a consensus sequence for the parent peptide KKVTMTCSAS that may be useful in the development of novel antimicrobial molecules.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 940
Author(s):  
Chaojie Zhu ◽  
Zhiheng Ji ◽  
Junkai Ma ◽  
Zhijie Ding ◽  
Jie Shen ◽  
...  

Cancer is one of the most devastating and ubiquitous human diseases. Conventional therapies like chemotherapy and radiotherapy are the most widely used cancer treatments. Despite the notable therapeutic improvements that these measures achieve, disappointing therapeutic outcome and cancer reoccurrence commonly following these therapies demonstrate the need for better alternatives. Among them, bacterial therapy has proven to be effective in its intrinsic cancer targeting ability and various therapeutic mechanisms that can be further bolstered by nanotechnology. In this review, we will discuss recent advances of nanotechnology-facilitated bacteria-based drug and gene delivery systems in cancer treatment. Therapeutic mechanisms of these hybrid nanoformulations are highlighted to provide an up-to-date understanding of this emerging field.


2021 ◽  
Vol 327 (2) ◽  
pp. 673-689
Author(s):  
Sumeera Sidiq ◽  
Ravi Ranjan Kumar ◽  
Neelima D. Passi ◽  
D. K. Dhawan ◽  
Jaya Shukla ◽  
...  

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Mie A. Nordmaj ◽  
Morgan E. Roberts ◽  
Emilie S. Sachse ◽  
Robert Dagil ◽  
Anne Poder Andersen ◽  
...  

AbstractAs an immune evasion and survival strategy, the Plasmodium falciparum malaria parasite has evolved a protein named VAR2CSA. This protein mediates sequestration of infected red blood cells in the placenta through the interaction with a unique carbohydrate abundantly and exclusively present in the placenta. Cancer cells were found to share the same expression of this distinct carbohydrate, termed oncofetal chondroitin sulfate on their surface. In this study we have used a protein conjugation system to produce a bispecific immune engager, V-aCD3, based on recombinant VAR2CSA as the cancer targeting moiety and an anti-CD3 single-chain variable fragment linked to a single-chain Fc as the immune engager. Conjugation of these two proteins resulted in a single functional moiety that induced immune mediated killing of a broad range of cancer cells in vitro and facilitated tumor arrest in an orthotopic bladder cancer xenograft model.


Sign in / Sign up

Export Citation Format

Share Document