Weighting hyperspectral image data for improved multivariate curve resolution results

2008 ◽  
Vol 22 (9) ◽  
pp. 482-490 ◽  
Author(s):  
Howland D. T. Jones ◽  
David M. Haaland ◽  
Michael B. Sinclair ◽  
David K. Melgaard ◽  
Mark H. Van Benthem ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Johannes Jordan ◽  
Elli Angelopoulou ◽  
Andreas Maier

Multispectral and hyperspectral images are well established in various fields of application like remote sensing, astronomy, and microscopic spectroscopy. In recent years, the availability of new sensor designs, more powerful processors, and high-capacity storage further opened this imaging modality to a wider array of applications like medical diagnosis, agriculture, and cultural heritage. This necessitates new tools that allow general analysis of the image data and are intuitive to users who are new to hyperspectral imaging. We introduce a novel framework that bundles new interactive visualization techniques with powerful algorithms and is accessible through an efficient and intuitive graphical user interface. We visualize the spectral distribution of an image via parallel coordinates with a strong link to traditional visualization techniques, enabling new paradigms in hyperspectral image analysis that focus on interactive raw data exploration. We combine novel methods for supervised segmentation, global clustering, and nonlinear false-color coding to assist in the visual inspection. Our framework coined Gerbil is open source and highly modular, building on established methods and being easily extensible for application-specific needs. It satisfies the need for a general, consistent software framework that tightly integrates analysis algorithms with an intuitive, modern interface to the raw image data and algorithmic results. Gerbil finds its worldwide use in academia and industry alike with several thousand downloads originating from 45 countries.


2011 ◽  
Vol 29 (No. 6) ◽  
pp. 595-602 ◽  
Author(s):  
Q. Lü ◽  
M.-j. Tang ◽  
J.-r. Cai ◽  
J.-w. Zhao ◽  
S. Vittayapadung

It is necessary to develop a non-destructive technique for kiwifruit quality analysis because the machine injury could lower the quality of fruit and incur economic losses. Bruises are not visible externally owing to the special physical properties of kiwifruit peel.We proposed the hyperspectral imaging technique to inspect the hidden bruises on kiwifruit. The Vis/NIR (408–1117 nm) hyperspectral image data was collected. Multiple optimal wavelength (682, 723, 744, 810, and 852 nm) images were obtained using principal component analysis on the high dimension spectral image data (wavelength range from 600 nm to 900 nm). The bruise regions were extracted from the component images of the five waveband images using RBF-SVM classification. The experimental results showed that the error of hidden bruises detection on fruits by means of hyperspectral imaging was 12.5%. It was concluded that the multiple optimal waveband images could be used to constructs a multispectral detection system for hidden bruises on kiwifruits.


Microscopy ◽  
2019 ◽  
Vol 69 (2) ◽  
pp. 110-122 ◽  
Author(s):  
Shunsuke Muto ◽  
Motoki Shiga

Abstract The combination of scanning transmission electron microscopy (STEM) with analytical instruments has become one of the most indispensable analytical tools in materials science. A set of microscopic image/spectral intensities collected from many sampling points in a region of interest, in which multiple physical/chemical components may be spatially and spectrally entangled, could be expected to be a rich source of information about a material. To unfold such an entangled image comprising information and spectral features into its individual pure components would necessitate the use of statistical treatment based on informatics and statistics. These computer-aided schemes or techniques are referred to as multivariate curve resolution, blind source separation or hyperspectral image analysis, depending on their application fields, and are classified as a subset of machine learning. In this review, we introduce non-negative matrix factorization, one of these unfolding techniques, to solve a wide variety of problems associated with the analysis of materials, particularly those related to STEM, electron energy-loss spectroscopy and energy-dispersive X-ray spectroscopy. This review, which commences with the description of the basic concept, the advantages and drawbacks of the technique, presents several additional strategies to overcome existing problems and their extensions to more general tensor decomposition schemes for further flexible applications are described.


Sign in / Sign up

Export Citation Format

Share Document