STRUCTURAL BEHAVIOUR OF JOINT BETWEEN STEEL BEAM AND CONCRETE ENCASED STEEL COMPOSITE COLUMN

ce/papers ◽  
2019 ◽  
Vol 3 (5-6) ◽  
pp. 294-304
Author(s):  
Masaki Arita ◽  
Satoshi Kitaoka ◽  
Ryoichi Kanno ◽  
Yuichi Nishida ◽  
J. Y. Richard Liew ◽  
...  
Author(s):  
Fethi Şermet ◽  
Emre Ercan ◽  
Emin Hökelekli ◽  
Ali Demir ◽  
Bengi Arısoy

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 983
Author(s):  
Shixu Wu ◽  
Keting Tong ◽  
Jianmin Wang ◽  
Yushun Li

To expand the application of bamboo as a building material, a new type of box section composite column that combined bamboo and steel was considered in this paper. The creep characteristics of eight bamboo-steel composite columns with different parameters were tested to evaluate the effects of load level, section size and interface type under long-term loading. Then, the deformation development of the composite column under long-term loading was observed and analyzed. In addition, the creep-time relationship curve and the creep coefficient were created. Furthermore, the creep model of the composite column was proposed based on the relationship between the creep of the composite column and the creep of bamboo, and the calculated value of creep was compared with the experimental value. The experimental results showed that the creep development of the composite column was fast at first, and then became stable after about 90 days. The creep characteristics were mainly affected by long-term load level and section size. The creep coefficient was between 0.160 and 0.190. Moreover, the creep model proposed in this paper was applicable to predict the creep development of bamboo-steel composite columns. The calculation results were in good agreement with the experimental results.


1981 ◽  
Vol 301 (0) ◽  
pp. 65-75
Author(s):  
MORIHISA FUJIMOTO ◽  
KOICHI ASAI ◽  
MAMORU KIMURA ◽  
KATSUHIKO SAITO

2019 ◽  
pp. 1-17
Author(s):  
Mohamed H. Makhlouf ◽  
Hala M. Refat

This paper presents an experimental and numerical study carried out to investigate the flexural and shear behavior of concrete-steel composite beams with circular web openings strengthened using two different techniques around openings. The experimental program conducted on nine simply supported beams which were constructed with different variables. One steel beam and eight concrete-steel composite beams were experimentally tested. The tested beams are of 1500 mm length and BFI cross section of steel beam but composite beams were BFI steel section connected with concrete slab had 300 mm width and 70 mm depth, while this connection is done by headed stud shear connector. The tested specimens subjected to positive bending were loaded by one or two line load across the width of the concrete slab. The main parameters were the type of beams, web openings effect, location of web openings, strengthening techniques around openings externally CFRP strips and vertical steel links using steel plates placed on the top and bottom surface of beams anchored with fine threads, and number of CFRP strips layers. The effect of these parameters on the failure of modes, ultimate load, first cracking load and deflection were investigated. Moreover, a finite element models were developed by ANSYS (version 14) to simulate all the tested specimens, experimental test results were compared with FE results obtained. The experimental results showed that both strengthening systems applied in this research were remarkably increased the beam strength, and the capacity retrieve of beams without openings. This study approved that steel links technique gave more prominent simplicity of use and low cost. FEM models were in good agreement with the corresponding experimental ones. However, the calculated ultimate loads were slightly higher than the experimental ultimate loads up to 10%.


2012 ◽  
Vol 9 (6) ◽  
pp. 403-426 ◽  
Author(s):  
Alireza Bahrami ◽  
Wan Hamidon Wan Badaruzzaman ◽  
Siti Aminah Osman

Author(s):  
Jaka Propika ◽  
Dita Kamarul Fitriyah ◽  
Yanisfa Septiarsilia

ABSTRAK Penggunaan kolom komposit telah banyak digunakan di berbagai bangunan bangunan tinggi. Dan pada umumnya, Kolom komposit dibagi menjadi 2 macam, yaitu kolom komposit inside steel dan outside steel dengan struktur baja terbungkus oleh beton disebut dengan kolom inside steel atau bisa saja disebut Concrete Encased Column. Sedangkan untuk baja yang berisi beton disebut dengan kolom outside steel atau juga disebut Concrete Filled Column. Penggunaan struktur kolom komposit outside steel sebagai kolom utama dalam mendukung beban lateral pada struktur rangka bangunan belum lazim digunakan dalam perkembangan konstruksi saat ini. Oleh karena itu, perlu dilakukan analisa kekuatan dari 2 macam kolom komposit agar diketahui jenis kolom komposit yang paling efektif dan memiliki kekuatan paling tinggi. Perhitungan yang dilakukan dengan menggunakan perhitungan manual pada kolom komposit inside steel dan outside steel yang berbentuk kotak, sedangkan untuk perhitungan dengan menggunakan program CSICOL dilakukan pada seluruh kolom komposit. Hasil nilai ØPn dan ØMn kemudian dibandingkan antara perhitungan manual dengan program CSICOL. Hasil perhitungan menunjukan bahwa kemampuan kolom komposit outside steel lebih baik dibandingkan kolom komposit inside steel dengan menggunakan standar volume dari ukuran kolom komposit inside steel kotak 400x400 mm. Kolom komposit outside steel berbentuk bundar dengan diameter 431 mm lebih unggul sebesar 17 % dalam menahan gaya aksial nominal (ØPn) dibandingkan semua tipe kolom komposit yang lain. Sedangkan kolom komposit outside steel berbentuk kotak dengan ukuran 405.70x405.70 mm lebih unggul menahan momen nominal (ØMn) sebesar 10,5 % dibandingkan semua tipe kolom komposit yang lain.Kata kunci : kolom komposit; inside steel (concrete- encased column); outside steel (concrete-filled column)ABSTRACT The use of composite columns has been widely used in various high-rise buildings. Composite columns are generally divided into two types: composite columns inside steel and outside steel columns with a steel structure wrapped in concrete called an inside steel column (concrete encased column), while steel containing concrete is called an outside steel column (concrete-filled column). The use of a composite column structure outside steel as the main column in supporting lateral loads in the building frame structure is not yet commonly used in current construction developments. Therefore, it is necessary to consider the strengths of 2 types of composite columns to know which type of composite column is the most effective and has the highest strength. Calculations are performed using manual calculations on composite columns inside steel and outside steel in the form of a box, while calculations using the CSiCOL program are carried out on all composite columns. The results of the ØPn and ØMn values are then compared between manual calculations and the CSiCOL program. The calculation results show that the composite outside steel column's ability is better than the inside steel composite column by using a standard volume from the size of the composite column inside steel box 400x400 mm. The round composite outside steel column with a 431 mm diameter is 17% superior in withstanding nominal axial force (ØPn) than all other composite column types. While the outside steel composite column in the form of a box with a size of 405.70x405.70 mm is superior to withstand the little moment (ØMn) by 10.5% compared to all other types of composite columns. 


Sign in / Sign up

Export Citation Format

Share Document