scholarly journals Performance Analysis of Regular and Irregular Structure Under Seismic Effect for RCC and Steel Composite Column Using Response Spectrum

Author(s):  
Nethravathi S.M ◽  
Thouseef T
Author(s):  
Fethi Şermet ◽  
Emre Ercan ◽  
Emin Hökelekli ◽  
Ali Demir ◽  
Bengi Arısoy

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 983
Author(s):  
Shixu Wu ◽  
Keting Tong ◽  
Jianmin Wang ◽  
Yushun Li

To expand the application of bamboo as a building material, a new type of box section composite column that combined bamboo and steel was considered in this paper. The creep characteristics of eight bamboo-steel composite columns with different parameters were tested to evaluate the effects of load level, section size and interface type under long-term loading. Then, the deformation development of the composite column under long-term loading was observed and analyzed. In addition, the creep-time relationship curve and the creep coefficient were created. Furthermore, the creep model of the composite column was proposed based on the relationship between the creep of the composite column and the creep of bamboo, and the calculated value of creep was compared with the experimental value. The experimental results showed that the creep development of the composite column was fast at first, and then became stable after about 90 days. The creep characteristics were mainly affected by long-term load level and section size. The creep coefficient was between 0.160 and 0.190. Moreover, the creep model proposed in this paper was applicable to predict the creep development of bamboo-steel composite columns. The calculation results were in good agreement with the experimental results.


ce/papers ◽  
2019 ◽  
Vol 3 (5-6) ◽  
pp. 294-304
Author(s):  
Masaki Arita ◽  
Satoshi Kitaoka ◽  
Ryoichi Kanno ◽  
Yuichi Nishida ◽  
J. Y. Richard Liew ◽  
...  

2013 ◽  
Vol 351-352 ◽  
pp. 849-853
Author(s):  
Lan Chen ◽  
De Long Lu ◽  
Xiao Gang Yin

Based on the vertical seismic information, the vertical seismic response spectrum was calculated by Matlab Lsim function. The seismic effect of Kiewitt-Lamella suspended-dome was measured by dynamic to static ratio. According to the EL-Centro seismic wave, it analyzed and compared the dynamic to static ratios which were calculated by the following four vertical seismic calculation methods respectively: the simplified method of specification, the mode-superposition response spectrum methods based on the horizontal earthquake affecting coefficients and the vertical acceleration response spectrum respectively, and the time history analysis method. Analysis shows that: For the seismic effect, the time history analysis method is larger than the other three methods, and the method based on the vertical acceleration response spectrum is closer to the time history analysis method. Owing to large difference of the four methods for seismic effect, various methods should be adopted to ensure the safety of vertical seismic design.


2021 ◽  
Vol 2 (1) ◽  
pp. 15-25
Author(s):  
Surendra Bhatta ◽  
Latip Kumar Sharma ◽  
Bharat Niure ◽  
Sudhir Niraula

Vertical irregular buildings are frequently constructed across the globe for functional as well as aesthetic purpose. However post-earthquake reconnaissance survey reports revealed high seismic vulnerability of the building with vertical irregularities. Consequently it is very important to explore the reason behind the high seismic vulnerability and the poor performance of irregular structures during the earthquake. A humble effort is under taken considering several case studies comprising different configuration of vertical irregular structures, so as to comprehend the seismic behavior of vertical irregular structure using response spectrum and pushover analysis has been attempted in finite element software ETABS 16.2.1 version. The results of the analysis indicate the irregular structures have ample chance of higher stress concentration as well as higher displacement demand at the vicinity of irregularity. Member strength enhancement at the vicinity of vertical irregularity may improve the overall seismic performance of the building. Also, this research checks the adequacy of fundamental mode properties for the quantification of vertical irregularity. Furthermore, pushover analysis has been done to observe the hinge formation pattern and also the plastic hinge rotation for observing the performance level of building.


2015 ◽  
Vol 713-715 ◽  
pp. 26-29
Author(s):  
Yu Xin Zhang ◽  
Wen Jin Zhang ◽  
Jin Ru Zhu

This paper proposes a new idea about damping of suspended floor in huge frame constructions. By using mode-superposition response spectrum method, the inner force and displacement in theory was obtained. Suspended floor system has economical, theoretical, social and humanistic benefits, but is not mature technically. Thus in the end, the paper proposes subsequent researching directions about damping of suspended floor system based on the basic assumption in the program.


Author(s):  
Jaka Propika ◽  
Dita Kamarul Fitriyah ◽  
Yanisfa Septiarsilia

ABSTRAK Penggunaan kolom komposit telah banyak digunakan di berbagai bangunan bangunan tinggi. Dan pada umumnya, Kolom komposit dibagi menjadi 2 macam, yaitu kolom komposit inside steel dan outside steel dengan struktur baja terbungkus oleh beton disebut dengan kolom inside steel atau bisa saja disebut Concrete Encased Column. Sedangkan untuk baja yang berisi beton disebut dengan kolom outside steel atau juga disebut Concrete Filled Column. Penggunaan struktur kolom komposit outside steel sebagai kolom utama dalam mendukung beban lateral pada struktur rangka bangunan belum lazim digunakan dalam perkembangan konstruksi saat ini. Oleh karena itu, perlu dilakukan analisa kekuatan dari 2 macam kolom komposit agar diketahui jenis kolom komposit yang paling efektif dan memiliki kekuatan paling tinggi. Perhitungan yang dilakukan dengan menggunakan perhitungan manual pada kolom komposit inside steel dan outside steel yang berbentuk kotak, sedangkan untuk perhitungan dengan menggunakan program CSICOL dilakukan pada seluruh kolom komposit. Hasil nilai ØPn dan ØMn kemudian dibandingkan antara perhitungan manual dengan program CSICOL. Hasil perhitungan menunjukan bahwa kemampuan kolom komposit outside steel lebih baik dibandingkan kolom komposit inside steel dengan menggunakan standar volume dari ukuran kolom komposit inside steel kotak 400x400 mm. Kolom komposit outside steel berbentuk bundar dengan diameter 431 mm lebih unggul sebesar 17 % dalam menahan gaya aksial nominal (ØPn) dibandingkan semua tipe kolom komposit yang lain. Sedangkan kolom komposit outside steel berbentuk kotak dengan ukuran 405.70x405.70 mm lebih unggul menahan momen nominal (ØMn) sebesar 10,5 % dibandingkan semua tipe kolom komposit yang lain.Kata kunci : kolom komposit; inside steel (concrete- encased column); outside steel (concrete-filled column)ABSTRACT The use of composite columns has been widely used in various high-rise buildings. Composite columns are generally divided into two types: composite columns inside steel and outside steel columns with a steel structure wrapped in concrete called an inside steel column (concrete encased column), while steel containing concrete is called an outside steel column (concrete-filled column). The use of a composite column structure outside steel as the main column in supporting lateral loads in the building frame structure is not yet commonly used in current construction developments. Therefore, it is necessary to consider the strengths of 2 types of composite columns to know which type of composite column is the most effective and has the highest strength. Calculations are performed using manual calculations on composite columns inside steel and outside steel in the form of a box, while calculations using the CSiCOL program are carried out on all composite columns. The results of the ØPn and ØMn values are then compared between manual calculations and the CSiCOL program. The calculation results show that the composite outside steel column's ability is better than the inside steel composite column by using a standard volume from the size of the composite column inside steel box 400x400 mm. The round composite outside steel column with a 431 mm diameter is 17% superior in withstanding nominal axial force (ØPn) than all other composite column types. While the outside steel composite column in the form of a box with a size of 405.70x405.70 mm is superior to withstand the little moment (ØMn) by 10.5% compared to all other types of composite columns. 


Sign in / Sign up

Export Citation Format

Share Document