scholarly journals 16.29: Determination of the residual stress distribution of steel bridge components by modelling the welding process

ce/papers ◽  
2017 ◽  
Vol 1 (2-3) ◽  
pp. 4276-4282
Author(s):  
Evy Van Puymbroeck ◽  
Wim Nagy ◽  
Ken Schotte ◽  
Zain Ul-Abdin ◽  
Hans De Backer
Author(s):  
Itaru Muroya ◽  
Youichi Iwamoto ◽  
Naoki Ogawa ◽  
Kiminobu Hojo ◽  
Kazuo Ogawa

In recent years, the occurrence of primary water stress corrosion cracking (PWSCC) in Alloy 600 weld regions of PWR plants has increased. In order to evaluate the crack propagation of PWSCC, it is required to estimate stress distribution including residual stress and operational stress through the wall thickness of the Alloy 600 weld region. In a national project in Japan for the purpose of establishing residual stress evaluation method, two test models were produced based on a reactor vessel outlet nozzle of Japanese PWR plants. One (Test model A) was produced using the same welding process applied in Japanese PWR plants in order to measure residual stress distribution of the Alloy 132 weld region. The other (Test model B) was produced using the same fabrication process in Japanese PWR plants in order to measure stress distribution change of the Alloy 132 weld region during fabrication process such as a hydrostatic test, welding a main coolant pipe to the stainless steel safe end. For Test model A, residual stress distribution was obtained using FE analysis, and was compared with the measured stress distribution. By comparing results, it was confirmed that the FE analysis result was in good agreement with the measurement result. For mock up test model B, the stress distribution of selected fabrication processes were measured using the Deep Hole Drilling (DHD) method. From these measurement results, it was found that the stress distribution in thickness direction at the center of the Alloy 132 weld line was changed largely during welding process of the safe end to the main coolant pipe.


2020 ◽  
Vol 64 (04) ◽  
pp. 384-391
Author(s):  
Tetyana Gurova ◽  
Segen F. Estefen ◽  
Anatoli Leontiev ◽  
Plinio T. Barbosa ◽  
Valentin Zhukov ◽  
...  

Repair by welding is widely used in the shipbuilding industry during ship construction. The effect of the residual stress distribution induced by the welding process on the ship structure is important for the repair effectiveness. This article presents an experimental study of the residual stress distribution induced by repair welding in the plates that are typically used in ships and offshore structures. Different repair techniques are evaluated to identify the best practice associated with residual stress values. Recommendations for repair welding are discussed, and modifications to the present practice are proposed.


2012 ◽  
Vol 155-156 ◽  
pp. 1218-1222
Author(s):  
Lei Wang ◽  
Mitsuyosi Tsunori

Residual stress distribution plays a very important role in welded structures, the aim of present work is to find out the effect of different welding methods on the residual stress distribution by means of neutron diffraction measurements and FE models simulation. 4 mm thick DH-36 steel plates were butt welded by MIG welding process and 5 mm thick AA 2024 aluminium alloy plates were butt welded by friction stir welding process. Results show that residual stresses of MIG welding process are higher than those of friction stir welding process. The peak residual stress of MIG weld is close to the room temperature uniaxial yield strength of DH-36 while the peak residual stress of friction stir weld is just about 50% of the room temperature uniaxial yield strength of AA2024. The size effect of MIG welded and effect of welding speeds of friction stir welded on the residual stress distribution have also been studied in the paper.


Author(s):  
Bai-Qiao Chen ◽  
C. Guedes Soares

This work investigates the temperature distribution, deformation and residual stress in steel plates as a result of different sequences of welding. The single-pass gas tungsten arc welding process is simulated by a three dimensional nonlinear thermo-elasto-plastic approach. It is observed that the distribution of residual stress varies through the direction of plate thickness. It is concluded that the welding sequence affects not only the welding deformation but also the residual stress mainly in the lower layer of the plates. An in-depth discussion on the pattern of residual stress distribution is presented, especially on the width of the tension zone. Smaller residual tension zone and slightly lower compressive stress are found in thicker plate.


2006 ◽  
Vol 524-525 ◽  
pp. 279-284
Author(s):  
Bernd Hasse ◽  
Mustafa Koçak ◽  
Walter Reimers

The non-destructive and phase selective determination of residual stresses caused by material processing (such as welding) in polycrystalline samples is usually performed by diffraction methods. In order to obtain information about stress fields at high spatial resolution with conventional methods, for example with micro beam techniques, the sample needs to be scanned in a very time consuming manner. A much faster method is the simultaneous investigation of a larger area using position sensitive diffractometry. This method was used for the analysis of the residual stress distribution in laser beam welded thin (2 mm and 3 mm) magnesium sheets.


Author(s):  
Jose de Jesus L. Carvajalino ◽  
José Luiz F. Freire ◽  
Vitor Eboli L. Paiva ◽  
José Eduardo Maneschy ◽  
Jorge G. Diaz ◽  
...  

This paper presents a structural integrity evaluation of a duplex stainless steel pressure vessel containing several flaws detected in a longitudinal weld. The evaluation had the objective of determining whether the pressure vessel was suitable to continue in operation or whether it should be immediately repaired or even replaced. Due to timely issues, a first analysis was conducted in accordance with the 2007 edition of the API 579-1/ASME FFS-1 Standard [1]. A second analysis was later repeated based on the 2016 edition [1]. Results obtained from both analyses were compared and presented relevant differences caused by the other calculation procedures used to determine residual stresses generated in the longitudinal welding. The assessment was based on the Failure Assessment Diagram (FAD). The existing indications were detected by ultrasonic examination and were located in one longitudinal weld. The assessment evaluations used stress intensity factors for the opening mode I, KI, obtained for two cases: 1) the combination of the several supposedly interacting cracks into an equivalent crack using the interaction criteria presented in [1]; 2) the allocation of the multiple cracks into a finite element model that took into consideration, more realistically, the interaction among the individual cracks. The total loads and stresses considered in the analysis resulted from a superposition of the design pressure stress and the residual stresses induced by the welding process. Due to lack of information on the material fracture toughness for the duplex stainless steel used in the vessel, the material toughness was estimated using a lower bound value suggested in [1] for common welded stainless austenitic steels, although higher values can be predicted for duplex steels by extending the use of a transition master curve as presented and discussed elsewhere [2–7] and by employing specific Charpy test results for the vessel material. One of the key aspects of the problem was the calculation of the residual stress distribution imposed by the welding process. Two procedures were adopted: one available in the API/ASME Standard issued in 2007, and the other in the 2016 release. The results presented in this paper have demonstrated that the limits of the Standard 2007 are conservatively satisfied when the Level 3 assessment is applied. The re-analysis of the vessel when subjected to the residual stress distribution presented in the newest 2016 edition leads to consider the vessel safe under an assessment Level 2. The overall conclusion was that the damaged pressure vessel could continue in service under restrictions of the development of an inspection plan to verify the absence of future crack growth.


Sign in / Sign up

Export Citation Format

Share Document