Susceptibility of palmer amaranth ( Amaranthus palmeri ) accessions in north carolina to Atrazine, Dicamba, S ‐metolachlor, and 2,4‐D

cftm ◽  
2021 ◽  
Author(s):  
Levi D. Moore ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
David L. Jordan ◽  
Michael D. Boyette ◽  
...  
2012 ◽  
Vol 39 (2) ◽  
pp. 121-126 ◽  
Author(s):  
Gurinderbir S. Chahal ◽  
David L. Jordan ◽  
Barbara B. Shew ◽  
Rick L. Brandenburg ◽  
James D. Burton ◽  
...  

Abstract A range of fungicides and herbicides can be applied to control pests and optimize peanut yield. Experiments were conducted in North Carolina to define biological and physicochemical interactions when clethodim and 2,4-DB were applied alone or with selected fungicides. Pyraclostrobin consistently reduced large crabgrass [Digitaria sanguinalis (L.) Scop.] control by clethodim. Chlorothalonil and tebuconazole plus trifloxystrobin reduced large crabgrass control by clethodim in two of four experiments while prothioconazole plus tebuconazole and flutriafol did not affect control. Palmer amaranth [Amaranthus palmeri S. Wats] control by 2,4-DB was not affected by these fungicides. Although differences in spray solution pH were noted among mixtures of clethodim plus crop oil concentrate or 2,4-DB and fungicides, the range of pH was 4.40 to 4.92 and 6.72 to 7.20, respectively, across sampling times of 0, 6, 24, and 72 h after solution preparation. Permanent precipitates were formed when clethodim, crop oil concentrate, and chlorothalonil were co-applied at each sampling interval. Permanent precipitates were not observed when clethodim and crop oil concentrate were included with other fungicides or when 2,4-DB was mixed with fungicides. Significant positive correlations were noted for Palmer amaranth control by 2,4-DB and solution pH but not for clethodim and solution pH.


2018 ◽  
Vol 32 (5) ◽  
pp. 586-591
Author(s):  
Samuel J. McGowen ◽  
Katherine M. Jennings ◽  
Sushila Chaudhari ◽  
David W. Monks ◽  
Jonathan R. Schultheis ◽  
...  

AbstractField studies were conducted in North Carolina to determine the critical period for Palmer amaranth control (CPPAC) in pickling cucumber. In removal treatments (REM), emerged Palmer amaranth were allowed to compete with cucumber for 14, 21, 28, or 35 d after sowing (DAS) in 2014 and 14, 21, 35, or 42 DAS in 2015, and cucumber was kept weed-free for the remainder of the season. In the establishment treatments (EST), cucumber was maintained free of Palmer amaranth by hand removal until 14, 21, 28, or 35 DAS in 2014 and until 14, 21, 35, or 42 DAS in 2015; after this, Palmer amaranth was allowed to establish and compete with the cucumber for the remainder of the season. The beginning and end of the CPPAC, based on 5% loss of marketable yield, was determined by fitting log-logistic and Gompertz equations to the relative yield data representing REM and EST, respectively. Season-long competition by Palmer amaranth reduced pickling cucumber yield by 45% to 98% and 88% to 98% during 2014 and 2015, respectively. When cucumber was planted on April 25, 2015, the CPPAC ranged from 570 to 1,002 heat units (HU), which corresponded to 32 to 49 DAS. However, when cucumber planting was delayed 2 to 4 wk (May 7 and May 21, 2014 and May 4, 2015), the CPPAC lasted from 100 to 918 HU (7 to 44 DAS). This research suggested that planting pickling cucumber as early as possible during the season may help to reduce competition by Palmer amaranth and delay the beginning of the CPPAC.


Weed Science ◽  
2020 ◽  
Vol 68 (6) ◽  
pp. 582-593
Author(s):  
Denis J. Mahoney ◽  
David L. Jordan ◽  
Nilda Roma-Burgos ◽  
Katherine M. Jennings ◽  
Ramon G. Leon ◽  
...  

AbstractPalmer amaranth (Amaranthus palmeri S. Watson) populations resistant to acetolactate synthase (ALS)-inhibiting herbicides and glyphosate are fairly common throughout the state of North Carolina (NC). This has led farm managers to rely more heavily on herbicides with other sites of action (SOA) for A. palmeri control, especially protoporphyrinogen oxidase and glutamine synthetase inhibitors. In the fall of 2016, seeds from A. palmeri populations were collected from the NC Coastal Plain, the state’s most prominent agricultural region. In separate experiments, plants with 2 to 4 leaves from the 110 populations were treated with field use rates of glyphosate, glufosinate-ammonium, fomesafen, mesotrione, or thifensulfuron-methyl. Percent visible control and survival were evaluated 3 wk after treatment. Survival frequencies were highest following glyphosate (99%) or thifensulfuron-methyl (96%) treatment. Known mutations conferring resistance to ALS inhibitors were found in populations surviving thifensulfuron-methyl application (Ala-122-Ser, Pro-197-Ser, Trp-574-Leu, and/or Ser-653-Asn), in addition to a new mutation (Ala-282-Asp) that requires further investigation. Forty-two populations had survivors after mesotrione application, with one population having 17% survival. Four populations survived fomesafen treatment, while none survived glufosinate. Dose–response studies showed an increase in fomesafen needed to kill 50% of two populations (LD50); however, these rates were far below the field use rate (less than 5 g ha−1). In two populations following mesotrione dose–response studies, a 2.4- to 3.3-fold increase was noted, with LD90 values approaching the field use rate (72.8 and 89.8 g ha−1). Screening of the progeny of individuals surviving mesotrione confirmed the presence of resistance alleles, as there were a higher number of survivors at the 1X rate compared with the parent population, confirming resistance to mesotrione. These data suggest A. palmeri resistant to chemistries other than glyphosate and thifensulfuron-methyl are present in NC, which highlights the need for weed management approaches to mitigate the evolution and spread of herbicide-resistant populations.


Author(s):  
Sushila Chaudhari ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Lucky K. Mehra

Greenhouse replacement series studies were conducted to determine the relative competitiveness of NC10-275 (unreleased, drought tolerant; upright, bushy, and vining growth with large leaves) and Covington (most commonly grown genotype in North Carolina; vining growth with smaller leaves) sweetpotato genotypes with weeds. Sweetpotato genotypes were grown with Palmer amaranth (tall growing) or common purslane (low growing) at five planting (sweetpotato:weed) proportions of 100:0, 75:25, 50:50, 25:75, and 0:100% at density of four plants pot-1. Reduction in common purslane shoot dry biomass was greater when growing with NC10-275 than when growing with Covington or alone. When growing with common purslane, shoot dry and root fresh biomass of Covington was 18 and 26% lower, respectively, than NC10-275. Relative yield (shoot dry biomass) and aggressivity index (AI) of common purslane was lower than both sweetpotato genotypes. Palmer amaranth shoot dry biomass was similar when growing alone or with Covington; whereas, it was reduced by 10% when growing with NC10-275 than alone. Palmer amaranth competition reduced shoot dry biomass and root fresh biomass of Covington by 23 and 42%, respectively, relative to NC10-275. Relative yield and AI of Palmer amaranth was greater than Covington but lower than NC10-275. This research indicates that sweetpotato genotypes differ in their ability to compete with weeds. Both sweetpotato genotypes were more competitive than common purslane, and the following species hierarchy exists: NC10-275 > Covington > common purslane. In contrast, NC10-275 was more competitive than Covington with Palmer amaranth, and the following species hierarchy exists: NC10-275 ≥ Palmer amaranth>Covington.


2020 ◽  
Vol 34 (4) ◽  
pp. 547-551 ◽  
Author(s):  
Stephen C. Smith ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Sushila Chaudhari ◽  
Jonathan R. Schultheis ◽  
...  

AbstractPalmer amaranth is the most common and troublesome weed in North Carolina sweetpotato. Field studies were conducted in Clinton, NC, in 2016 and 2017 to determine the critical timing of Palmer amaranth removal in ‘Covington’ sweetpotato. Palmer amaranth was grown with sweetpotato from transplanting to 2, 3, 4, 5, 6, 7, 8, and 9 wk after transplanting (WAP) and maintained weed-free for the remainder of the season. Palmer amaranth height and shoot dry biomass increased as Palmer amaranth removal was delayed. Season-long competition by Palmer amaranth interference reduced marketable yields by 85% and 95% in 2016 and 2017, respectively. Sweetpotato yield loss displayed a strong inverse linear relationship with Palmer amaranth height. A 0.6% and 0.4% decrease in yield was observed for every centimeter of Palmer amaranth growth in 2016 and 2017, respectively. The critical timing for Palmer amaranth removal, based on 5% loss of marketable yield, was determined by fitting a log-logistic model to the relative yield data and was determined to be 2 WAP. These results show that Palmer amaranth is highly competitive with sweetpotato and should be managed as early as possible in the season. The requirement of an early critical timing of weed removal to prevent yield loss emphasizes the importance of early-season scouting and Palmer amaranth removal in sweetpotato fields. Any delay in removal can result in substantial yield reductions and fewer premium quality roots.


2015 ◽  
Vol 29 (4) ◽  
pp. 758-770 ◽  
Author(s):  
Charles W. Cahoon ◽  
Alan C. York ◽  
David L. Jordan ◽  
Wesley J. Everman ◽  
Richard W. Seagroves ◽  
...  

Cotton growers rely heavily upon glufosinate and various residual herbicides applied preplant, PRE, and POST to control Palmer amaranth resistant to glyphosate and acetolactate synthase-inhibiting herbicides. Recently deregulated in the United States, cotton resistant to dicamba, glufosinate, and glyphosate (B2XF cotton) offers a new platform for controlling herbicide-resistant Palmer amaranth. A field experiment was conducted in North Carolina and Georgia to determine B2XF cotton tolerance to dicamba, glufosinate, and glyphosate and to compare Palmer amaranth control by dicamba to a currently used, nondicamba program in both glufosinate- and glyphosate-based systems. Treatments consisted of glyphosate or glufosinate applied early POST (EPOST) and mid-POST (MPOST) in a factorial arrangement of treatments with seven dicamba options (no dicamba, PRE, EPOST, MPOST, PRE followed by [fb] EPOST, PRE fb MPOST, and EPOST fb MPOST) and a nondicamba standard. The nondicamba standard consisted of fomesafen PRE, pyrithiobac EPOST, and acetochlor MPOST. Dicamba caused no injury when applied PRE and only minor, transient injury when applied POST. At time of EPOST application, Palmer amaranth control by dicamba or fomesafen applied PRE, in combination with acetochlor, was similar and 13 to 17% greater than acetochlor alone. Dicamba was generally more effective on Palmer amaranth applied POST rather than PRE, and two applications were usually more effective than one. In glyphosate-based systems, greater Palmer amaranth control and cotton yield were obtained with dicamba applied EPOST, MPOST, or EPOST fb MPOST compared with the standard herbicides in North Carolina. In contrast, dicamba was no more effective than the standard herbicides in the glufosinate-based systems. In Georgia, dicamba was as effective as the standard herbicides in a glyphosate-based system only when dicamba was applied EPOST fb MPOST. In glufosinate-based systems in Georgia, dicamba was as effective as standard herbicides only when dicamba was applied twice.


Weed Science ◽  
2013 ◽  
Vol 61 (1) ◽  
pp. 136-145 ◽  
Author(s):  
Aman Chandi ◽  
Susana R. Milla-Lewis ◽  
David L. Jordan ◽  
Alan C. York ◽  
James D. Burton ◽  
...  

Glyphosate-resistant Palmer amaranth is a serious problem in southern cropping systems. Much phenotypic variation is observed in Palmer amaranth populations with respect to plant growth and development and susceptibility to herbicides. This may be related to levels of genetic diversity existing in populations. Knowledge of genetic diversity in populations of Palmer amaranth may be useful in understanding distribution and development of herbicide resistance. Research was conducted to assess genetic diversity among and within eight Palmer amaranth populations collected from North Carolina and Georgia using amplified fragment length polymorphism (AFLP) markers. Pair-wise genetic similarity (GS) values were found to be relatively low, averaging 0.34. The highest and the lowest GS between populations were 0.49 and 0.24, respectively, while the highest and the lowest GS within populations were 0.56 and 0.36, respectively. Cluster and principal coordinate (PCO) analyses grouped individuals mostly by population (localized geographic region) irrespective of response to glyphosate or gender of individuals. Analysis of molecular variance (AMOVA) results when populations were nested within states revealed significant variation among and within populations within states while variation among states was not significant. Variation among and within populations within state accounted for 19 and 77% of the total variation, respectively, while variation among states accounted for only 3% of the total variation. The within population contribution towards total variation was always higher than among states and among populations within states irrespective of response to glyphosate or gender of individuals. These results are significant in terms of efficacy of similar management approaches both in terms of chemical and biological control in different areas infested with Palmer amaranth.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Aman Chandi ◽  
Susana R. Milla-Lewis ◽  
Darci Giacomini ◽  
Philip Westra ◽  
Christopher Preston ◽  
...  

Inheritance of glyphosate resistance in a Palmer amaranth biotype from North Carolina was studied. Glyphosate rates for 50% survival of glyphosate-resistant (GR) and glyphosate-susceptible (GS) biotypes were 1288 and 58 g ha−1, respectively. These values for F1 progenies obtained from reciprocal crosses (GR×GSandGS×GRwere 794 and 501 g ha−1, respectively. Dose response of F1 progenies indicated that resistance was not fully dominant over susceptibility. Lack of significant differences between dose responses for reciprocal F1 families suggested that genetic control of glyphosate resistance was governed by nuclear genome. Analysis of F1 backcross (BC1F1) families showed that 10 and 8 BC1F1 families out of 15 fitted monogenic inheritance at 2000 and 3000 g ha−1glyphosate, respectively. These results indicate that inheritance of glyphosate resistance in this biotype is incompletely dominant, nuclear inherited, and might not be consistent with a single gene mechanism of inheritance. Relative 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) copy number varied from 22 to 63 across 10 individuals from resistant biotype. This suggested that variableEPSPScopy number in the parents might be influential in determining if inheritance of glyphosate resistance is monogenic or polygenic in this biotype.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Amy H. Poirier ◽  
Alan C. York ◽  
David L. Jordan ◽  
Aman Chandi ◽  
Wesley J. Everman ◽  
...  

Glyphosate resistance in Palmer amaranth was first confirmed in North Carolina in 2005. A survey that year indicated 17 and 18% of 290 populations sampled were resistant to glyphosate and thifensulfuron, respectively. During the fall of 2010, 274 predetermined sites in North Carolina were surveyed to determine distribution of Palmer amaranth and to determine if and where resistance to fomesafen, glufosinate, glyphosate, and thifensulfuron occurred. Palmer amaranth was present at 134 sites. When mortality for each biotype was compared to a known susceptible biotype for each herbicide within a rate, 93 and 36% of biotypes were controlled less by glyphosate (840 g ae ha−1) and thifensulfuron (70 g ai ha−1), respectively. This approach may have underestimated resistance for segregating populations due to lack of homogeneity of the herbicide resistance trait and its contribution to error variance. When mortality and visible control were combined, 98% and 97% of the populations were resistant to glyphosate and the ALS inhibitor thifensulfuron, respectively, and 95% of the populations expressed multiple resistance to both herbicides. This study confirms that Palmer amaranth is commonly found across the major row crop production regions of North Carolina and that resistance to glyphosate and ALS-inhibiting herbicides is nearly universal. No resistance to fomesafen or glufosinate was observed.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jared R. Whitaker ◽  
James D. Burton ◽  
Alan C. York ◽  
David L. Jordan ◽  
Aman Chandi

Glyphosate-resistant (GR) biotypes of Palmer amaranth are now commonly found across the southern United States. Experiments were conducted to characterize physiological differences between a GR biotype and a glyphosate-susceptible (GS) biotype from North Carolina. The GR biotype had an 18-fold level of resistance based upon rates necessary to reduce shoot fresh weight 50%. Shikimate accumulated in both biotypes following glyphosate application, but greater concentrations were found in GS plants. Absorption and translocation of14C-glyphosate were studied in both biotypes with and without an overspray with commercial glyphosate potassium salt (840 g ae ha−1) immediately prior to14C-glyphosate application. Greater absorption was noted 6 h after treatment (HAT) in GS compared with GR plants, but no differences were observed at 12 to 72 HAT. Oversprayed plants absorbed 33 and 61% more14C by 48 and 72 HAT, respectively, than plants not oversprayed.14C distribution (above treated leaf, below treated leaf, roots) was similar in both biotypes. Together, these results suggest that resistance in this biotype is not due to an altered target enzyme or translocation but may be in part due to the rate of glyphosate absorption. These results also are consistent with resistance being due to increased gene copy number for the target enzyme.


Sign in / Sign up

Export Citation Format

Share Document