Critical Period for Palmer Amaranth (Amaranthus palmeri) Control in Pickling Cucumber

2018 ◽  
Vol 32 (5) ◽  
pp. 586-591
Author(s):  
Samuel J. McGowen ◽  
Katherine M. Jennings ◽  
Sushila Chaudhari ◽  
David W. Monks ◽  
Jonathan R. Schultheis ◽  
...  

AbstractField studies were conducted in North Carolina to determine the critical period for Palmer amaranth control (CPPAC) in pickling cucumber. In removal treatments (REM), emerged Palmer amaranth were allowed to compete with cucumber for 14, 21, 28, or 35 d after sowing (DAS) in 2014 and 14, 21, 35, or 42 DAS in 2015, and cucumber was kept weed-free for the remainder of the season. In the establishment treatments (EST), cucumber was maintained free of Palmer amaranth by hand removal until 14, 21, 28, or 35 DAS in 2014 and until 14, 21, 35, or 42 DAS in 2015; after this, Palmer amaranth was allowed to establish and compete with the cucumber for the remainder of the season. The beginning and end of the CPPAC, based on 5% loss of marketable yield, was determined by fitting log-logistic and Gompertz equations to the relative yield data representing REM and EST, respectively. Season-long competition by Palmer amaranth reduced pickling cucumber yield by 45% to 98% and 88% to 98% during 2014 and 2015, respectively. When cucumber was planted on April 25, 2015, the CPPAC ranged from 570 to 1,002 heat units (HU), which corresponded to 32 to 49 DAS. However, when cucumber planting was delayed 2 to 4 wk (May 7 and May 21, 2014 and May 4, 2015), the CPPAC lasted from 100 to 918 HU (7 to 44 DAS). This research suggested that planting pickling cucumber as early as possible during the season may help to reduce competition by Palmer amaranth and delay the beginning of the CPPAC.

2020 ◽  
Vol 34 (4) ◽  
pp. 547-551 ◽  
Author(s):  
Stephen C. Smith ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Sushila Chaudhari ◽  
Jonathan R. Schultheis ◽  
...  

AbstractPalmer amaranth is the most common and troublesome weed in North Carolina sweetpotato. Field studies were conducted in Clinton, NC, in 2016 and 2017 to determine the critical timing of Palmer amaranth removal in ‘Covington’ sweetpotato. Palmer amaranth was grown with sweetpotato from transplanting to 2, 3, 4, 5, 6, 7, 8, and 9 wk after transplanting (WAP) and maintained weed-free for the remainder of the season. Palmer amaranth height and shoot dry biomass increased as Palmer amaranth removal was delayed. Season-long competition by Palmer amaranth interference reduced marketable yields by 85% and 95% in 2016 and 2017, respectively. Sweetpotato yield loss displayed a strong inverse linear relationship with Palmer amaranth height. A 0.6% and 0.4% decrease in yield was observed for every centimeter of Palmer amaranth growth in 2016 and 2017, respectively. The critical timing for Palmer amaranth removal, based on 5% loss of marketable yield, was determined by fitting a log-logistic model to the relative yield data and was determined to be 2 WAP. These results show that Palmer amaranth is highly competitive with sweetpotato and should be managed as early as possible in the season. The requirement of an early critical timing of weed removal to prevent yield loss emphasizes the importance of early-season scouting and Palmer amaranth removal in sweetpotato fields. Any delay in removal can result in substantial yield reductions and fewer premium quality roots.


2021 ◽  
pp. 1-18
Author(s):  
Levi D. Moore ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Ramon G. Leon ◽  
David L. Jordan ◽  
...  

Abstract Field studies were conducted to evaluate linuron for POST control of Palmer amaranth in sweetpotato to minimize reliance on protoporphyrinogen oxidase (PPO)-inhibiting herbicides. Treatments were arranged in a two by four factorial where the first factor consisted of two rates of linuron (420 and 700 g ai ha−1), and the second factor consisted of linuron applied alone or in combinations of linuron plus a nonionic surfactant (NIS) (0.5% v/v), linuron plus S-metolachlor (800 g ai ha−1), or linuron plus NIS plus S-metolachlor. In addition, S-metolachlor alone and nontreated weedy and weed-free checks were included for comparison. Treatments were applied to ‘Covington’ sweetpotato 8 d after transplanting (DAP). S-metolachlor alone provided poor Palmer amaranth control because emergence had occurred at applications. All treatments that included linuron resulted in at least 98 and 91% Palmer amaranth control 1 and 2 wk after treatment (WAT), respectively. Including NIS with linuron did not increase Palmer amaranth control compared to linuron alone, but increased sweetpotato injury and subsequently decreased total sweetpotato yield by 25%. Including S-metolachlor with linuron resulted in the greatest Palmer amaranth control 4 WAT, but increased crop foliar injury to 36% 1 WAT compared to 17% foliar injury from linuron alone. Marketable and total sweetpotato yield was similar between linuron alone and linuron plus S-metolachlor or S-metolachlor plus NIS treatments, though all treatments resulted in at least 39% less total yield than the weed-free check resulting from herbicide injury and/or Palmer amaranth competition. Because of the excellent POST Palmer amaranth control from linuron 1 WAT, a system including linuron applied 7 DAP followed by S-metolachlor applied 14 DAP could help to extend residual Palmer amaranth control further into the critical period of weed control while minimizing sweetpotato injury.


Author(s):  
Sushila Chaudhari ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Lucky K. Mehra

Greenhouse replacement series studies were conducted to determine the relative competitiveness of NC10-275 (unreleased, drought tolerant; upright, bushy, and vining growth with large leaves) and Covington (most commonly grown genotype in North Carolina; vining growth with smaller leaves) sweetpotato genotypes with weeds. Sweetpotato genotypes were grown with Palmer amaranth (tall growing) or common purslane (low growing) at five planting (sweetpotato:weed) proportions of 100:0, 75:25, 50:50, 25:75, and 0:100% at density of four plants pot-1. Reduction in common purslane shoot dry biomass was greater when growing with NC10-275 than when growing with Covington or alone. When growing with common purslane, shoot dry and root fresh biomass of Covington was 18 and 26% lower, respectively, than NC10-275. Relative yield (shoot dry biomass) and aggressivity index (AI) of common purslane was lower than both sweetpotato genotypes. Palmer amaranth shoot dry biomass was similar when growing alone or with Covington; whereas, it was reduced by 10% when growing with NC10-275 than alone. Palmer amaranth competition reduced shoot dry biomass and root fresh biomass of Covington by 23 and 42%, respectively, relative to NC10-275. Relative yield and AI of Palmer amaranth was greater than Covington but lower than NC10-275. This research indicates that sweetpotato genotypes differ in their ability to compete with weeds. Both sweetpotato genotypes were more competitive than common purslane, and the following species hierarchy exists: NC10-275 > Covington > common purslane. In contrast, NC10-275 was more competitive than Covington with Palmer amaranth, and the following species hierarchy exists: NC10-275 ≥ Palmer amaranth>Covington.


2006 ◽  
Vol 20 (4) ◽  
pp. 867-872 ◽  
Author(s):  
Dogan Isik ◽  
Husrev Mennan ◽  
Bekir Bukun ◽  
Ahmet Oz ◽  
Mathieu Ngouajio

Field studies were conducted in 2001 and 2002 in the Black Sea Region of northern Turkey to determine the critical period for weed control (CPWC) in corn and the effects of weed interference on corn height. Treatments of increasing duration of weed interference and weed-free period were imposed at weekly intervals from 0 to 12 wk after crop emergence (WAE). The CPWC was determined with the use of 2.5, 5, and 10% acceptable yield loss levels by fitting logistic and Gompertz equations to relative yield data. With 5% yield loss level, the CPWC was 5 wk, starting at 0.2 WAE and ending at 5.2 WAE, which corresponded to the one- to five-leaf stage of corn. The CPWC increased to 8.9 wk, starting at 0 WAE and ending at 8.9 WAE, at the 2.5% yield loss level. At 10% yield loss level, the CPWC decreased to 1.7 wk, starting at 2.1 WAE and ending at 3.8 WAE.


HortScience ◽  
2007 ◽  
Vol 42 (1) ◽  
pp. 106-109 ◽  
Author(s):  
Nihat Tursun ◽  
Bekir Bükün ◽  
Sinan Can Karacan ◽  
Mathieu Ngouajio ◽  
Hüsrev Mennan

Field studies were conducted in Mersin, Turkey, in 2002 and 2003 to determine the critical period for weed control in leek and to investigate the effects of weed interference on weed biomass. The critical period for weed control in leek based on a 5% acceptable yield loss level was calculated by fitting logistic and Gompertz equations to relative yield data. Total fresh biomass of weeds increased as the duration of weed infestation increased. The beginning of the critical period for weed control was 7 days after transplanting in 2002 and 13 days after transplanting in 2003. The end of the critical period for weed control was 85 days after transplanting in 2002 and 60 days after transplanting in 2003. Results of this study suggest that leek should be kept weed free between 7 days after transplanting and 85 days after transplanting to avoid yield losses in excess of 5%.


2020 ◽  
Vol 34 (4) ◽  
pp. 552-559
Author(s):  
Jennifer J. Lindley ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Sushila Chaudhari ◽  
Jonathan R. Schultheis ◽  
...  

AbstractManagement options are needed to limit sweetpotato yield loss due to weeds. Greenhouse studies were conducted in 2018 in Greensboro, NC, and in the field from 2016 to 2018 in Clinton, NC, to evaluate the effect of bicyclopyrone on sweetpotato and Palmer amaranth (field only). In greenhouse studies, Covington and NC04-531 clones were treated with bicyclopyrone (0, 25, 50, 100, or 150 g ai ha−1) either preplant (PP; i.e., immediately before transplanting) or post-transplant (PT; i.e., on the same day after transplanting). Sweetpotato plant injury and stunting increased, and vine length and shoot dry weight decreased with increasing rate of bicyclopyrone regardless of clone or application timing. In field studies, Beauregard (2016) or Covington (2017 and 2018) sweetpotato clones were treated with bicyclopyrone at 50 g ha−1 PP, flumioxazin at 107 g ai ha−1 PP, bicyclopyrone at 50 or 100 g ha−1 PP followed by (fb) S-metolachlor at 800 g ai ha−1 PT, flumioxazin at 107 g ha−1 PP fb S-metolachlor at 800 g ha−1 PT, flumioxazin at 107 g ha−1 PP fb S-metolachlor at 800 g ha−1 PT fb bicyclopyrone at 50 g ha−1 PT-directed, and clomazone at 420 g ai ha−1 PP fb S-metolachlor at 800 g ha−1 PT. Bicyclopyrone PP at 100 g ha−1 fb S-metolachlor PT caused 33% or greater crop stunting and 44% or greater marketable yield reduction compared with the weed-free check in 2016 (Beauregard) and 2017 (Covington). Bicyclopyrone PP at 50 g ha−1 alone or fb S-metolachlor PT resulted in 12% or less injury and similar no. 1 and jumbo yields as the weed-free check in 2 of 3 yr. Injury to Covington from bicyclopyrone PT-directed was 4% or less at 4 or 5 wk after transplanting and marketable yield was similar to that of the weed-free check in 2017 and 2018.


2020 ◽  
pp. 1-8
Author(s):  
Levi D. Moore ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Michael D. Boyette ◽  
David L. Jordan ◽  
...  

Abstract Field studies were conducted to determine sweetpotato tolerance to and weed control from management systems that included linuron. Treatments included flumioxazin preplant (107 g ai ha−1) followed by (fb) S-metolachlor (800 g ai ha−1), oryzalin (840 g ai ha−1), or linuron (280, 420, 560, 700, and 840 g ai ha−1) alone or mixed with S-metolachlor or oryzalin applied 7 d after transplanting. Weeds did not emerge before the treatment applications. Two of the four field studies were maintained weed-free throughout the season to evaluate sweetpotato tolerance without weed interference. The herbicide program with the greatest sweetpotato yield was flumioxazin fb S-metolachlor. Mixing linuron with S-metolachlor did not improve Palmer amaranth management and decreased marketable yield by up to 28% compared with flumioxazin fb S-metolachlor. Thus, linuron should not be applied POST in sweetpotato if Palmer amaranth has not emerged at the time of application.


2012 ◽  
Vol 39 (2) ◽  
pp. 121-126 ◽  
Author(s):  
Gurinderbir S. Chahal ◽  
David L. Jordan ◽  
Barbara B. Shew ◽  
Rick L. Brandenburg ◽  
James D. Burton ◽  
...  

Abstract A range of fungicides and herbicides can be applied to control pests and optimize peanut yield. Experiments were conducted in North Carolina to define biological and physicochemical interactions when clethodim and 2,4-DB were applied alone or with selected fungicides. Pyraclostrobin consistently reduced large crabgrass [Digitaria sanguinalis (L.) Scop.] control by clethodim. Chlorothalonil and tebuconazole plus trifloxystrobin reduced large crabgrass control by clethodim in two of four experiments while prothioconazole plus tebuconazole and flutriafol did not affect control. Palmer amaranth [Amaranthus palmeri S. Wats] control by 2,4-DB was not affected by these fungicides. Although differences in spray solution pH were noted among mixtures of clethodim plus crop oil concentrate or 2,4-DB and fungicides, the range of pH was 4.40 to 4.92 and 6.72 to 7.20, respectively, across sampling times of 0, 6, 24, and 72 h after solution preparation. Permanent precipitates were formed when clethodim, crop oil concentrate, and chlorothalonil were co-applied at each sampling interval. Permanent precipitates were not observed when clethodim and crop oil concentrate were included with other fungicides or when 2,4-DB was mixed with fungicides. Significant positive correlations were noted for Palmer amaranth control by 2,4-DB and solution pH but not for clethodim and solution pH.


cftm ◽  
2021 ◽  
Author(s):  
Levi D. Moore ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
David L. Jordan ◽  
Michael D. Boyette ◽  
...  

2015 ◽  
Vol 43 (2) ◽  
pp. 355-360 ◽  
Author(s):  
Dogan ISIK ◽  
Adem AKCA ◽  
Emine KAYA ALTOP ◽  
Nihat TURSUN ◽  
Husrev MENNAN

Accurate assessment of crop-weed control period is an essential part for planning an effective weed management for cropping systems. Field experiments were conducted during the seasonal growing periods of potato in 2012 and 2013 in Kayseri, Turkey to assess critical period for weed control (CPWC) in potato. A four parameter log-logistic model was used to assist in monitoring and analysing two sets of related, relative crop yield. Data was obtained during the periods of increased weed interference and as a comparison, during weed-free periods. In both years, the relative yield of potato decreased with a longer period of weed-interference whereas increased with increasing length of weed free period. In 2012, the CPWC ranged from 112 to 1014 GDD (Growing Degree Days) which corresponded to 8 to 66 days after crop emergence (DAE) and between 135-958 GDD (10 to 63 DAE) in the following year based on a 5% acceptable yield loss. Weed-free conditions needed to be established as early as the first week after crop emergence and maintained as late as ten weeks after crop emergence to avoid more than 5% yield loss in the potato. The results suggest that CPWC could well assist potato producers to significantly reduce the expense of their weed management programs as well as improving its efficacy.


Sign in / Sign up

Export Citation Format

Share Document