Organometallic Molecular Wires with Thioacetylene Backbones, trans‐{RS‐(C≡C)n}2Ru(phosphine)4: High Conductance Through Non‐Aromatic Bridging Linkers

Author(s):  
Atsushi Yashiro ◽  
Yuya Tanaka ◽  
Tomofumi Tada ◽  
Shintaro Fujii ◽  
Tomoaki Nishino ◽  
...  
2021 ◽  
Author(s):  
Yuya Tanaka ◽  
Yuya Kato ◽  
Kaho Sugimoto ◽  
Reo Kawano ◽  
Tomofumi Tada ◽  
...  

Multinuclear organometallic molecular wires having (diethynylthiophene)diyl-Ru(dppe)2 repeating units show high conductance with small attenuation factors. The strong Ru–Ru interaction is the key for the long-range carrier transport.


2018 ◽  
Author(s):  
Nicholas Marshall

A set of experiments in surface-initiated ring-opening metathesis polymerization, including end-functionalization of growing brushes and contact angle/cyclic voltammetry measurements. We report preparation and CV of two different conjugated polymer films, and several endgroup and sidechain functionalization experiments using cross-metathesis and active ester substitution.<br>


2004 ◽  
Vol 48 (6) ◽  
pp. 2153-2158 ◽  
Author(s):  
Charléric Bornet ◽  
Nathalie Saint ◽  
Lilia Fetnaci ◽  
Myrielle Dupont ◽  
Anne Davin-Régli ◽  
...  

ABSTRACT In Enterobacter aerogenes, β-lactam resistance often involves a decrease in outer membrane permeability induced by modifications of porin synthesis. In ATCC 15038 strain, we observed a different pattern of porin production associated with a variable antibiotic susceptibility. We purified Omp35, which is expressed under conditions of low osmolality and analyzed its pore-forming properties in artificial membranes. This porin was found to be an OmpF-like protein with high conductance values. It showed a noticeably higher conductance compared to Omp36 and a specific location of WNYT residues in the L3 loop. The importance of the constriction region in the porin function suggests that this organization is involved in the level of susceptibility to negative large cephalosporins such as ceftriaxone by bacteria producing the Omp35 porin subfamily.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lokamani ◽  
Jeffrey Kelling ◽  
Robin Ohmann ◽  
Jörg Meyer ◽  
Tim Kühne ◽  
...  

AbstractDue to the low corrugation of the Au(111) surface, 1,4-bis(phenylethynyl)-2,5-bis(ethoxy)benzene (PEEB) molecules can form quasi interlocked lateral patterns, which are observed in scanning tunneling microscopy experiments at low temperatures. We demonstrate a multi-dimensional clustering approach to quantify the anisotropic pair-wise interaction of molecules and explain these patterns. We perform high-throughput calculations to evaluate an energy function, which incorporates the adsorption energy of single PEEB molecules on the metal surface and the intermolecular interaction energy of a pair of PEEB molecules. The analysis of the energy function reveals, that, depending on coverage density, specific types of pattern are preferred which can potentially be exploited to form one-dimensional molecular wires on Au(111).


Author(s):  
Rehab I. Yousef ◽  
Naglaa F.H. Mahmoud ◽  
Fouad I. El-Hosiny ◽  
Fritz E. Kühn ◽  
Ghada Bassioni

Sign in / Sign up

Export Citation Format

Share Document