ChemInform Abstract: MULTIPARAMETER OPTIMIZATION PROCEDURE FOR THE ANALYSIS OF REACTION MECHANISTIC SCHEMES. SOLVOLYSES OF CYCLOPENTYL P-BROMOBENZENESULFONATE

1979 ◽  
Vol 10 (42) ◽  
Author(s):  
V. J. JUN. SHINER ◽  
D. A. NOLLEN ◽  
K. HUMSKI
Author(s):  
Viktorija Tarasova ◽  
Mikhail Kuznetsov

The goal of this research was to develop the methods used for the analysis of the thermodynamic efficiency of the ordinary single-stage and regenerative cooling cycles depending on the determinant thermal-&-physical properties of cooling agents. The thermodynamic efficiency of the steam –compressive single-stage ordinary and regenerative cycles of cooling machines operating on different cooling agents has been investigated. The dependence was established between the effectiveness value of the use of the regeneration for the cooling cycle and the modified Clausius criterion of the cooling agent. Generalized regressive dependences were obtained for the evaluation of the efficiency of the ordinary and regenerative cycles based on the determinant modified Clausius criterion and these give us an opportunity to establish the fields for the preferential use of the promising cooling agents for regenerative cycles and establish requirements to the properties of cooling agents during their choice. These contribute to the selection of the rational flowchart for the specified thermal and physical characteristics of the cooling agent and for the thermal behavior of the unit operation and form appropriate rational geometric characteristics for the heat exchangers and interconnecting piping. The suggested methods enable the determination of the expected characteristics of the unit and the boundary attainable values of its efficiency in the conditions of the limited information on the thermal-&-physical properties of new (by-way) cooling agents without waiting for the appearance of accurate state diagrams. Analytical equations used for the estimation of the cooling factor depending on the modified Clausius criterion allow us to perform the front-end project computations making use of only absolute values of evaporation and condensation temperatures. The effect of the steam depression, the dryness value and the efficiency factor of the regenerative heat exchanger on the cooling factor of the cycle has been studied. A practical value of the obtained data consists in the opportunity of the objective and operative estimation of the efficiency of the use of the cooling agent for the regenerative and steam compressing cycles of the cooling machine using no multiparameter optimization procedure.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (2) ◽  
pp. 119-129 ◽  
Author(s):  
VILJAMI MAAKALA ◽  
PASI MIIKKULAINEN

Capacities of the largest new recovery boilers are steadily rising, and there is every reason to expect this trend to continue. However, the furnace designs for these large boilers have not been optimized and, in general, are based on semiheuristic rules and experience with smaller boilers. We present a multiobjective optimization code suitable for diverse optimization tasks and use it to dimension a high-capacity recovery boiler furnace. The objective was to find the furnace dimensions (width, depth, and height) that optimize eight performance criteria while satisfying additional inequality constraints. The optimization procedure was carried out in a fully automatic manner by means of the code, which is based on a genetic algorithm optimization method and a radial basis function network surrogate model. The code was coupled with a recovery boiler furnace computational fluid dynamics model that was used to obtain performance information on the individual furnace designs considered. The optimization code found numerous furnace geometries that deliver better performance than the base design, which was taken as a starting point. We propose one of these as a better design for the high-capacity recovery boiler. In particular, the proposed design reduces the number of liquor particles landing on the walls by 37%, the average carbon monoxide (CO) content at nose level by 81%, and the regions of high CO content at nose level by 78% from the values obtained with the base design. We show that optimizing the furnace design can significantly improve recovery boiler performance.


2010 ◽  
Vol 130 (9) ◽  
pp. 819-825 ◽  
Author(s):  
Takeshi Shinkai ◽  
Keisuke Udagawa ◽  
Hiroshi Furuta ◽  
Akira Shimamura

2014 ◽  
Vol 13 (8) ◽  
pp. 4723-4728
Author(s):  
Pratiksha Saxena ◽  
Smt. Anjali

In this paper, an integrated simulation optimization model for the assignment problems is developed. An effective algorithm is developed to evaluate and analyze the back-end stored simulation results. This paper proposes simulation tool SIMASI (Simulation of assignment models) to simulate assignment models. SIMASI is a tool which simulates and computes the results of different assignment models. This tool is programmed in DOT.NET and is based on analytical approach to guide optimization strategy. Objective of this paper is to provide a user friendly simulation tool which gives optimized assignment model results. Simulation is carried out by providing the required values of matrix for resource and destination requirements and result is stored in the database for further comparison and study. Result is obtained in terms of the performance measurements of classical models of assignment system. This simulation tool is interfaced with an optimization procedure based on classical models of assignment system. The simulation results are obtained and analyzed rigorously with the help of numerical examples. 


1995 ◽  
Author(s):  
A Chattopadhyay ◽  
J Narayan ◽  
N Pagaldipti ◽  
X Wensheng ◽  
S Cheung

2018 ◽  
Author(s):  
Yasemin Basdogan ◽  
John Keith

<div> <div> <div> <p>We report a static quantum chemistry modeling treatment to study how solvent molecules affect chemical reaction mechanisms without dynamics simulations. This modeling scheme uses a global optimization procedure to identify low energy intermediate states with different numbers of explicit solvent molecules and then the growing string method to locate sequential transition states along a reaction pathway. Testing this approach on the acid-catalyzed Morita-Baylis-Hillman (MBH) reaction in methanol, we found a reaction mechanism that is consistent with both recent experiments and computationally intensive dynamics simulations with explicit solvation. In doing so, we explain unphysical pitfalls that obfuscate computational modeling that uses microsolvated reaction intermediates. This new paramedic approach can promisingly capture essential physical chemistry of the complicated and multistep MBH reaction mechanism, and the energy profiles found with this model appear reasonably insensitive to the level of theory used for energy calculations. Thus, it should be a useful and computationally cost-effective approach for modeling solvent mediated reaction mechanisms when dynamics simulations are not possible. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Niclas Ståhl ◽  
Göran Falkman ◽  
Alexander Karlsson ◽  
Gunnar Mathiason ◽  
Jonas Boström

<p>In medicinal chemistry programs it is key to design and make compounds that are efficacious and safe. This is a long, complex and difficult multi-parameter optimization process, often including several properties with orthogonal trends. New methods for the automated design of compounds against profiles of multiple properties are thus of great value. Here we present a fragment-based reinforcement learning approach based on an actor-critic model, for the generation of novel molecules with optimal properties. The actor and the critic are both modelled with bidirectional long short-term memory (LSTM) networks. The AI method learns how to generate new compounds with desired properties by starting from an initial set of lead molecules and then improve these by replacing some of their fragments. A balanced binary tree based on the similarity of fragments is used in the generative process to bias the output towards structurally similar molecules. The method is demonstrated by a case study showing that 93% of the generated molecules are chemically valid, and a third satisfy the targeted objectives, while there were none in the initial set.</p>


2020 ◽  
Author(s):  
Trevor Brown ◽  
Yousef Vahabzadeh ◽  
Christophe Caloz ◽  
Puyan Mojabi

<pre>A method based on electromagnetic inversion is extended to facilitate the design of passive, lossless, and reciprocal metasurfaces. More specifically, the inversion step is modified to ensure that the field transformation satisfies local power conservation, using available knowledge of the incident field. This paper formulates a novel cost functional to apply this additional constraint, and describes the optimization procedure used to find a solution that satisfies both the user-defined field specifications and local power conservation. Lastly, the method is demonstrated with a two-dimensional (2D) example.</pre>


2017 ◽  
Vol 68 (9) ◽  
pp. 2196-2203 ◽  
Author(s):  
Mara Crisan ◽  
Gheorghe Maria

Novel coupled enzymatic systems reported important applications in the industrial bio-catalysis. Multi-enzymatic reactions can successfully replace complex chemical syntheses, using milder reaction conditions, and generating less waste. For such systems acting simultaneously, the model-based engineering calculations (design, reactor operation optimization) are difficult tasks, because they must account for interacting reactions, differences in enzymes optimal activity domains and deactivation kinetics. The determination of the optimal operating mode (enzyme ratios, enzyme feeding policy, temperature, pH) often turns into a difficult multi-objective optimization problem with multiple constraints to be solved for every particular system. The paper focuses on applying a modular screening procedure that can identify the optimal operating policy of an enzymatic reactor, which minimizes the enzyme consumption, given the process kinetic model, and an imposed production capacity. Following an optimization procedure, the process effectiveness is evaluated in a systematic approach, by including simple batch reactor (BR), batch with intermittent addition of the key-enzyme following certain optimal policies (BRP). Exemplification is made for the case of the enzymatic reduction of D-fructose to mannitol by using suspended MDH (mannitol dehydrogenase) and NADH (Nicotinamide adenine dinucleotide) cofactor, with the in-situ continuous regeneration of the cofactor by the expense of formate degradation in the presence of suspended FDH (Formate dehydrogenase).


Sign in / Sign up

Export Citation Format

Share Document