ChemInform Abstract: A New Glycosylation Reaction Based on a “Remote Activation Concept”: Glycosyl 2-Pyridinecarboxylate as a Novel Glycosyl Donor.

ChemInform ◽  
2010 ◽  
Vol 23 (30) ◽  
pp. no-no
Author(s):  
K. KOIDE ◽  
M. OHNO ◽  
S. KOBAYASHI
Synlett ◽  
2021 ◽  
Author(s):  
Kazutada Ikeuchi ◽  
Shintaro Matsumoto ◽  
Daiki Ikuta ◽  
Hidetoshi Yamada

AbstractGenerally, glycosylation reactions activate an anomeric substituent in a glycosyl donor to generate an oxocarbenium ion intermediate. Here we report a novel glycosylation reaction triggered by the activation of a 2-O-substituted propargyl group in a 3,6-O-1,1′-[(ethane-1,2-diyl)bibenzene-2,2′-bis(methylene)]-β-thioglucoside. This reaction proceeds through a cationic Au(I)-mediated intramolecular migration of the anomeric substituent onto the alkyne moiety of the propargyl group, followed by α-attack by the hydroxy group in the glycosyl acceptor on the oxocarbenium ion. The migration of the anomeric group occurs selectively through a 6-exo-dig pathway. The 2-(phenylsulfanyl)prop-2-en-1-yl group produced during the glycosylation is removable under conditions similar to those used for removing an allyl group. This reaction will be developed for further applications in orthogonal oligosaccharide synthesis.


2019 ◽  
Author(s):  
Samir Messaoudi ◽  
Nedjwa Bennai ◽  
Amelie Chabrier ◽  
Maha Fatthalla ◽  
Expédite Yen-Pon ◽  
...  

We have discovered a new mode of reactivity of 1-thiosugars in the presence of Cu(II) or Co(II) for a stereoselective <i>O</i>-glycosylation reaction. The process involves the use of a catalytic amount of Cu(acac)2 or Co(acac)2 and Ag2CO3 as an oxidant in α,α,α-trifluorotoluene (TFT). Moreover, this protocol turned out to have a broad scope, allowing to prepare a wide range of com-plex substituted <i>O</i>-glycoside esters in good to excellent yields with an exclusive β-selectivity. The late-stage modification of phar-maceuticals by this method was also demonstrated.


2017 ◽  
Vol 8 (3) ◽  
pp. 1867-1875 ◽  
Author(s):  
S. van der Vorm ◽  
T. Hansen ◽  
H. S. Overkleeft ◽  
G. A. van der Marel ◽  
J. D. C. Codée

The acceptor dependence on the glycosylation stereoselectivity is revealed by a systematic study employing model acceptors of gradually changing nucleophilicity.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2341
Author(s):  
Flavio Cermola ◽  
Serena Vella ◽  
Marina DellaGreca ◽  
Angela Tuzi ◽  
Maria Rosaria Iesce

The synthesis of glycosides and modified nucleosides represents a wide research field in organic chemistry. The classical methodology is based on coupling reactions between a glycosyl donor and an acceptor. An alternative strategy for new C-nucleosides is used in this approach, which consists of modifying a pre-existent furyl aglycone. This approach is applied to obtain novel pyridazine C-nucleosides starting with 2- and 3-(ribofuranosyl)furans. It is based on singlet oxygen [4+2] cycloaddition followed by reduction and hydrazine cyclization under neutral conditions. The mild three-step one-pot procedure leads stereoselectively to novel pyridazine C-nucleosides of pharmacological interest. The use of acetyls as protecting groups provides an elegant direct route to a deprotected new pyridazine C-nucleoside.


2021 ◽  
Author(s):  
Wei-Yu Shi ◽  
Ya-Nan Ding ◽  
Nian Zheng ◽  
Xue-Ya Gou ◽  
Zhe Zhang ◽  
...  

C-Aryl glycosides are of high value as drug candidates. Here a novel and cost-effective nickel catalyzed ortho-CAr-H glycosylation reaction with high regioselectivity and excellent α-selectivity is described. This method shows...


Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 43
Author(s):  
Marco Mangiagalli ◽  
Marina Lotti

β-galactosidases (EC 3.2.1.23) catalyze the hydrolysis of β-galactosidic bonds in oligosaccharides and, under certain conditions, transfer a sugar moiety from a glycosyl donor to an acceptor. Cold-active β-galactosidases are identified in microorganisms endemic to permanently low-temperature environments. While mesophilic β-galactosidases are broadly studied and employed for biotechnological purposes, the cold-active enzymes are still scarcely explored, although they may prove very useful in biotechnological processes at low temperature. This review covers several issues related to cold-active β-galactosidases, including their classification, structure and molecular mechanisms of cold adaptation. Moreover, their applications are discussed, focusing on the production of lactose-free dairy products as well as on the valorization of cheese whey and the synthesis of glycosyl building blocks for the food, cosmetic and pharmaceutical industries.


2007 ◽  
Vol 63 (9) ◽  
pp. o3772-o3772
Author(s):  
Yow-Fu Tsai ◽  
Jen-Ta Yang ◽  
Jhy-Der Chen ◽  
Chia-Her Lin
Keyword(s):  

ChemInform ◽  
2010 ◽  
Vol 31 (36) ◽  
pp. no-no
Author(s):  
Hideaki Matsui ◽  
Jun-ichi Furukawa ◽  
Takuro Awano ◽  
Norio Nishi ◽  
Nobuo Sakairi
Keyword(s):  

2000 ◽  
Vol 11 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Garry R Smith ◽  
Frank J Villani ◽  
Luca Failli ◽  
Robert M Giuliano
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document