scholarly journals A One-Pot Approach to Novel Pyridazine C-Nucleosides

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2341
Author(s):  
Flavio Cermola ◽  
Serena Vella ◽  
Marina DellaGreca ◽  
Angela Tuzi ◽  
Maria Rosaria Iesce

The synthesis of glycosides and modified nucleosides represents a wide research field in organic chemistry. The classical methodology is based on coupling reactions between a glycosyl donor and an acceptor. An alternative strategy for new C-nucleosides is used in this approach, which consists of modifying a pre-existent furyl aglycone. This approach is applied to obtain novel pyridazine C-nucleosides starting with 2- and 3-(ribofuranosyl)furans. It is based on singlet oxygen [4+2] cycloaddition followed by reduction and hydrazine cyclization under neutral conditions. The mild three-step one-pot procedure leads stereoselectively to novel pyridazine C-nucleosides of pharmacological interest. The use of acetyls as protecting groups provides an elegant direct route to a deprotected new pyridazine C-nucleoside.

2019 ◽  
Author(s):  
Victor Bloemendal ◽  
Floris P. J. T. Rutjes ◽  
Thomas J. Boltje ◽  
Daan Sondag ◽  
Hidde Elferink ◽  
...  

<p>In this manuscript we describe a modular pathway to synthesize biologically relevant (–)-<i>trans</i>-Δ<sup>8</sup>-THC derivatives, which can be used to modulate the pharmacologically important CB<sub>1</sub> and CB<sub>2</sub> receptors. This pathway involves a one-pot Friedel-Crafts alkylation/cyclization protocol, followed by Suzuki-Miyaura cross-coupling reactions and gives rise to a series of new Δ<sup>8</sup>-THC derivatives. In addition, we demonstrate using extensive NMR evidence that similar halide-substituted Friedel-Crafts alkylation/cyclization products in previous articles were wrongly assigned as the para-isomers, which also has consequence for the assignment of the subsequent cross-coupled products and interpretation of their biological activity. </p> <p>Considering the importance of the availability of THC derivatives in medicinal chemistry research and the fact that previously synthesized compounds were wrongly assigned, we feel this research is describing a straightforward pathway into new cannabinoids.</p>


2020 ◽  
Vol 24 ◽  
Author(s):  
Teng Wang ◽  
Zongrui Liu ◽  
Songlin Wang ◽  
Esmail Vessally

The article has been withdrawn at the request of editor of the journal Current Organic Chemistry: Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused. The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1349 ◽  
Author(s):  
Arnar Guðmundsson ◽  
Jan-E. Bäckvall

Transition metal catalysis in modern organic synthesis has largely focused on noble transition metals like palladium, platinum and ruthenium. The toxicity and low abundance of these metals, however, has led to a rising focus on the development of the more sustainable base metals like iron, copper and nickel for use in catalysis. Iron is a particularly good candidate for this purpose due to its abundance, wide redox potential range, and the ease with which its properties can be tuned through the exploitation of its multiple oxidation states, electron spin states and redox potential. This is a fact made clear by all life on Earth, where iron is used as a cornerstone in the chemistry of living processes. In this mini review, we report on the general advancements in the field of iron catalysis in organic chemistry covering addition reactions, C-H activation, cross-coupling reactions, cycloadditions, isomerization and redox reactions.


2018 ◽  
Vol 14 ◽  
pp. 1655-1659 ◽  
Author(s):  
Ugo Azzena ◽  
Massimo Carraro ◽  
Gloria Modugno ◽  
Luisa Pisano ◽  
Luigi Urtis

The application of heterogeneous catalysis and green solvents to the set up of widely employed reactions is a challenge in contemporary organic chemistry. We applied such an approach to the synthesis and further conversion of tetrahydropyranyl ethers, an important class of compounds widely employed in multistep syntheses. Several alcohols and phenols were almost quantitatively converted into the corresponding tetrahydropyranyl ethers in cyclopentyl methyl ether or 2-methyltetrahydrofuran employing NH4HSO4 supported on SiO2 as a recyclable acidic catalyst. Easy work up of the reaction mixtures and the versatility of the solvents allowed further conversion of the reaction products under one-pot reaction conditions.


2012 ◽  
Vol 9 (4) ◽  
pp. 2239-2244 ◽  
Author(s):  
Hossein Anaraki-Ardakani ◽  
Maziar Noei ◽  
Mina Karbalaei-Harofteh ◽  
Shahab Zomorodbakhsh

A new and efficient one-pot synthesis of polysubstituted pyrrole derivatives by three-component reaction between dialkyl acetylenedicarboxylates, triphenylphosphine, 2-aminopyridin derivatives in the presence of arylglyoxals is described. The reactions were performed in dichloromethane at room temperature and neutral conditions and afforded high yields of products.


Sign in / Sign up

Export Citation Format

Share Document