ChemInform Abstract: Synthesis and Antiviral Activity of Deoxy Analogs of 1-((2- Hydroxyethoxy)methyl)-6-(phenylthio)thymine (HEPT) as Potent and Selective Anti-HIV-1 Agents.

ChemInform ◽  
2010 ◽  
Vol 25 (10) ◽  
pp. no-no
Author(s):  
H. TANAKA ◽  
H. TAKASHIMA ◽  
M. UBASAWA ◽  
K. SEKIYA ◽  
I. NITTA ◽  
...  
Keyword(s):  
Anti Hiv ◽  
2003 ◽  
Vol 14 (5) ◽  
pp. 271-279 ◽  
Author(s):  
Tokumi Maruyama ◽  
Shigetada Kozai ◽  
Tetsuo Yamasaki ◽  
Myriam Witvrouw ◽  
Christophe Pannecouque ◽  
...  

The development of new non-nucleoside reverse transcriptase inhibitors (NNRTIs) is an efficient strategy for finding new therapeutic agents against human immunodeficiency virus (HIV). A large number of 6-substituted uracil derivatives have been prepared in order to explore new NNRTIs. However, there are few approaches to anti-HIV agents from 1,3-disubstituted uracil derivatives. Therefore, we tried to prepare several 1,3-disubstituted uracils, which were easily obtainable from uracil by preparation under alkali and Mitsunobu conditions, and examined their antiviral activity against HIV-1 and human cytomegalovirus (HCMV). We found that 1-benzyl-3-(3,5-dimethylbenzyl)uracil and 1-cyanomethyl-3-(3,5-dimethylbenzyl)-4-thiouracil showed powerful inhibition against HCMV and HIV-1, respectively.


2007 ◽  
Vol 51 (9) ◽  
pp. 3147-3154 ◽  
Author(s):  
Richard Hazen ◽  
Robert Harvey ◽  
Robert Ferris ◽  
Charles Craig ◽  
Phillip Yates ◽  
...  

ABSTRACT Brecanavir, a novel tyrosyl-based arylsulfonamide, high-affinity, human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), has been evaluated for anti-HIV activity in several in vitro assays. Preclinical assessment of brecanavir indicated that this compound potently inhibited HIV-1 in cell culture assays with 50% effective concentrations (EC50s) of 0.2 to 0.53 nM and was equally active against HIV strains utilizing either the CXCR4 or CCR5 coreceptor, as was found with other PIs. The presence of up to 40% human serum decreased the anti-HIV-1 activity of brecanavir by 5.2-fold, but under these conditions the compound retained single-digit nanomolar EC50s. When brecanavir was tested in combination with nucleoside reverse transcriptase inhibitors, the antiviral activity of brecanavir was synergistic with the effects of stavudine and additive to the effects of zidovudine, tenofovir, dideoxycytidine, didanosine, adefovir, abacavir, lamivudine, and emtricitabine. Brecanavir was synergistic with the nonnucleoside reverse transcriptase inhibitor nevirapine or delavirdine and was additive to the effects of efavirenz. In combination with other PIs, brecanavir was additive to the activities of indinavir, lopinavir, nelfinavir, ritonavir, amprenavir, saquinavir, and atazanavir. Clinical HIV isolates from PI-experienced patients were evaluated for sensitivity to brecanavir and other PIs in a recombinant virus assay. Brecanavir had a <5-fold increase in EC50s against 80% of patient isolates tested and had a greater mean in vitro potency than amprenavir, indinavir, lopinavir, atazanavir, tipranavir, and darunavir. Brecanavir is by a substantial margin the most potent and broadly active antiviral agent among the PIs tested in vitro.


1993 ◽  
Vol 4 (4) ◽  
pp. 207-214 ◽  
Author(s):  
A. R. Neurath ◽  
N. Strick ◽  
S. Jiang

Several compounds, including the triphenylmethane derivative aurintricarboxylic acid (ATA) and porphyrins, were reported to inhibit the binding of anti-V3 loop-specific antibodies to the V3 loop of gp120 from HIV-1 III-B and to have antiviral activity, probably due to interference with the biological function of the V3 loop. However, these compounds can be applied to antiviral chemotherapy only if they interact with envelope glycoproteins from a multitude of epidemic HIV-1 strains and inhibit their replication. Since recombinant envelope glycoproteins, synthetic peptides and anti-V3 monoclonal antibodies may not be available for these HIV-1 strains, alternative assays are needed to prescreen different compounds for potential antiviral activity against these viruses. Results presented here indicate that: (1) virions of HIV-1 MN, most closely related to primary HIV-1 isolates from European and North American countries, and human anti-HIV-1 antibodies, can also be used for rapid prescreening of antiviral agents, (2) compounds with antiviral activity against HIV-1 MN, discerned by site-directed immunoassays, inhibited the reaction of human anti-HIV-1 with a V3 loop consensus peptide corresponding to European/North American HIV-1 isolates, and (3) meso-tetra (4-carboxyphenyl) porphine (MTCPP), one of the most potent inhibitors of HIV-1 replication selected on the basis of site-directed immunoassays, preferentially attached to the V3 loop of gp120.


2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Yuanmei Zhu ◽  
Huihui Chong ◽  
Danwei Yu ◽  
Yan Guo ◽  
Yusen Zhou ◽  
...  

ABSTRACT HIV infection requires lifelong treatment with multiple antiretroviral drugs in a combination, which ultimately causes cumulative toxicities and drug resistance, thus necessitating the development of novel antiviral agents. We recently found that enfuvirtide (T-20)-based lipopeptides conjugated with fatty acids have dramatically increased in vitro and in vivo anti-HIV activities. Herein, a group of cholesterol-modified fusion inhibitors were characterized with significant findings. First, novel cholesterylated inhibitors, such as LP-83 and LP-86, showed the most potent activity in inhibiting divergent human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). Second, the cholesterylated inhibitors were highly active to inhibit T-20-resistant mutants that still conferred high resistance to the fatty acid derivatives. Third, the cholesterylated inhibitors had extremely potent activity to block HIV envelope (Env)-mediated cell-cell fusion, especially a truncated minimum lipopeptide (LP-95), showing a greatly increased potency relative to its inhibition on virus infection. Fourth, the cholesterylated inhibitors efficiently bound to both the cellular and viral membranes to exert their antiviral activities. Fifth, the cholesterylated inhibitors displayed low cytotoxicity and binding capacity with human serum albumin. Sixth, we further demonstrated that LP-83 exhibited extremely potent and long-lasting anti-HIV activity in rhesus monkeys. Taken together, the present results help our understanding on the mechanism of action of lipopeptide-based viral fusion inhibitors and facilitate the development of novel anti-HIV drugs. IMPORTANCE The peptide drug enfuvirtide (T-20) remains the only membrane fusion inhibitor available for treatment of viral infection, which is used in combination therapy of HIV-1 infection; however, it exhibits relatively low antiviral activity and a genetic barrier to inducing resistance, calling for the continuous development for novel anti-HIV agents. In this study, we report cholesterylated fusion inhibitors showing the most potent and broad anti-HIV activities to date. The new inhibitors have been comprehensively characterized for their modes of action and druggability, including small size, low cytotoxicity, binding ability to human serum albumin (HSA), and, especially, extremely potent and long-lasting antiviral activity in rhesus monkeys. Therefore, the present studies have provided new drug candidates for clinical development, which can also be used as tools to probe the mechanisms of viral entry and inhibition.


2020 ◽  
Vol 18 (5) ◽  
pp. 332-341
Author(s):  
Xu-Sheng Huang ◽  
Rong-Hua Luo ◽  
Xiong-Lin Hu ◽  
Huan Chen ◽  
Si-Ying Xiang ◽  
...  

Background: Acquired immunodeficiency syndrome can hardly be cured currently and people with human immunodeficiency virus (HIV) need lifelong treatment that may result in the emergence of drug resistance which leads to failed treatment. Thus, the development of new anti- HIV drugs and new treatment regimens are necessary. Objective: The aim of this study is to analyze the combined anti-HIV activity of tenofovir disoproxil fumarate, lamivudine and ACC007, a new non-nucleoside reverse transcriptase inhibitor. Methods: The antiviral activity of tenofovir disoproxil fumarate, lamivudine and ACC007 alone or in combination against different HIV-1 strains was determined by the detection of HIV-1 p24 level through enzyme-linked immunosorbent assay. Result: ACC007 showed EC50 of nanomolar range (from 3.03 nM to 252.59 nM) against all HIV-1 strains used in this study except the HIV-1A17, with EC50 of 1.57 μM. The combined antiviral activity of ACC007, lamivudine and tenofovir disoproxil fumarate showed synergy antiviral activity against all HIV-1 strains used in this study. The three-drug combination showed moderate synergism against HIV-1A17, HIV-14755-5, HIV-1K103N and HIV-1V106M, with a combination index value ranging from 0.71 to 0.87, and showed synergism against the other HIV-1 strains with combination index value from 0.35 to 0.67. The combination with ACC007 significantly increases the dose reduction index value of lamivudine and tenofovir disoproxil fumarate, compared with two-drug combination. Conclusion: ACC007 exhibits potent antiviral activity alone or with 3TC and TDF, and exerts synergistic effect against all HIV strains used in our investigation in vitro.


1997 ◽  
Vol 8 (2) ◽  
pp. 131-139 ◽  
Author(s):  
AR Neurath ◽  
AK Debnath ◽  
N Strick ◽  
Y-Y Li ◽  
K Lin ◽  
...  

Modification of the major bovine whey protein, β-lactoglobulin (β-LG) by 3-hydroxyphthalic anhydride (3HP) leads to the generation of a potent inhibitor of infection by human immunodeficiency virus (HIV) types 1 and 2, designated 3HP-β-LG. 3HP-β-LG also has antiviral activity against herpesviruses, albeit at concentrations exceeding those required for inhibition of HIV-1 infection. The topical application of 3HP-β-LG to decrease the rate of sexual transmission of HIV and other sexually transmitted viruses worldwide is being considered. Results presented here: (i) define the conditions for chemical modification of β-LG by 3HP, resulting in 3HP-β-LG with optimum anti-HIV-1 activity; (ii) show that β-LG, prior to chemical modification, or 3HP-β-LG can be exposed to the elevated temperatures used to pasteurize milk without adversely affecting anti-HIV-1 activity; (iii) provide evidence that 3HP-β-LG is a more potent anti-HIV-1 compound than sulphated polysaccharides, other candidate compounds considered as prophylactic agents to prevent sexual transmission of HIV-1; and (iv) confirm that the primary target for 3HP-β-LG is CD4, although binding to the HIV-1 envelope protein gp120 was also observed and contributed to the antiviral activity of 3HP-β-LG.


2012 ◽  
Vol 86 (16) ◽  
pp. 8472-8481 ◽  
Author(s):  
Sandhya Kortagere ◽  
Navid Madani ◽  
Marie K. Mankowski ◽  
Arne Schön ◽  
Isaac Zentner ◽  
...  

The HIV-1 capsid (CA) protein plays essential roles in both early and late stages of virl replication and has emerged as a novel drug target. We report hybrid structure-based virtual screening to identify small molecules with the potential to interact with the N-terminal domain (NTD) of HIV-1 CA and disrupt early, preintegration steps of the HIV-1 replication cycle. The small molecule 4,4′-[dibenzo[b,d]furan-2,8-diylbis(5-phenyl-1H-imidazole-4,2-diyl)]dibenzoic acid (CK026), which had anti-HIV-1 activity in single- and multiple-round infections but failed to inhibit viral replication in peripheral blood mononuclear cells (PBMCs), was identified. Three analogues of CK026 with reduced size and better drug-like properties were synthesized and assessed. Compound I-XW-053 (4-(4,5-diphenyl-1H-imidazol-2-yl)benzoic acid) retained all of the antiviral activity of the parental compound and inhibited the replication of a diverse panel of primary HIV-1 isolates in PBMCs, while displaying no appreciable cytotoxicity. This antiviral activity was specific to HIV-1, as I-XW-053 displayed no effect on the replication of SIV or against a panel of nonretroviruses. Direct interaction of I-XW-053 was quantified with wild-type and mutant CA protein using surface plasmon resonance and isothermal titration calorimetry. Mutation of Ile37 and Arg173, which are required for interaction with compound I-XW-053, crippled the virus at an early, preintegration step. Using quantitative PCR, we demonstrated that treatment with I-XW-053 inhibited HIV-1 reverse transcription in multiple cell types, indirectly pointing to dysfunction in the uncoating process. In summary, we have identified a CA-specific compound that targets and inhibits a novel region in the NTD-NTD interface, affects uncoating, and possesses broad-spectrum anti-HIV-1 activity.


1997 ◽  
Vol 8 (4) ◽  
pp. 343-352 ◽  
Author(s):  
J Cinatl ◽  
B Gröschel ◽  
R Zehner ◽  
J Cinatl ◽  
C Périgaud ◽  
...  

Human T lymphoid MOLT4/8 cells were grown continuously for more than 2 years in a medium containing 3′-azido-2′,3′-dideoxythymidine (zidovudine; AZT) at a concentration of 250 μM. These cells, designated MOLT-4/8rAZT250, were used to test the cytotoxic and antiviral activity of AZT. Intracellular accumulation of AZT, expression of the multidrug resistance 1 (MDR-1) gene, thymidine kinase (TK) gene and activity of the TK enzyme in cellular extracts were measured. The results showed that both the cytotoxic and antiviral activity of AZT were significantly lower in MOLT4/8rAZT250 than in MOLT4/8 cells; concentrations required to inhibit 50% production of the p24 human immunodeficiency virus type 1 (HIV-1) antigen of two laboratory strains were at least 100-fold higher in resistant cells. The MDR-1 gene was not expressed in the resistant cells. TK mRNA expression was significantly lower in the resistant than in the sensitive cells. TK enzymatic activity for deoxythymidine phosphorylation was impaired in MOLT4/8rAZT250 cells compared to the sensitive cells. AZT was phosphorylated only in the sensitive cells whereas no phosphorylation of AZT was found in the resistant cells. We tested whether several AZT-monophosphate triesters, which bypass cellular TK, could overcome resistance to the cytotoxic and antiviral activity of AZT. The bis( t-butylSATE) phosphotriester derivative of AZT showed comparable cytotoxic and antiviral activity in sensitive and resistant cells. The results demonstrated that MOLT4/8rAZT250 cells exert resistance to the anti-HIV activity of the drug mainly owing to the lack of AZT phosphorylation and that resistance may be bypassed by using AZT-monophosphate SATE prodrugs.


2005 ◽  
Vol 49 (10) ◽  
pp. 4110-4120 ◽  
Author(s):  
Dong-Seong Lee ◽  
Kyeong-Eun Jung ◽  
Cheol-Hee Yoon ◽  
Hong Lim ◽  
Yong-Soo Bae

ABSTRACT A series of modified oligonucleotides (ONs), characterized by a phosphorothioate (P═S) backbone and a six-membered azasugar (6-AZS) as a sugar substitute in a nucleotide, were newly synthesized and assessed for their ability to inhibit human immunodeficiency virus type 1 (HIV-1) via simple treatment of HIV-1-infected cultures, without any transfection process. While unmodified P═S ONs exhibited only minor anti-HIV-1 activity, the six-membered azasugar nucleotide (6-AZN)-containing P═S oligonucleotides (AZPSONs) exhibited remarkable antiviral activity against HIV-1/simian-human immunodeficiency virus (SHIV) replication and syncytium formation (50% effective concentration = 0.02 to 0.2 μM). The AZPSONs exhibited little cytotoxicity at concentrations of up to 100 μM. DBM 2198, one of the most effective AZPSONs, exhibited antiviral activity against a broad spectrum of HIV-1, including T-cell-tropic, monotropic, and even drug-resistant HIV-1 variants. The anti-HIV-1 activities of DBM 2198 were similarly maintained in HIV-1-infected cultures of peripheral blood mononuclear cells. When we treated severely infected cultures with DBM 2198, syncytia disappeared completely within 2 days. Taken together, our results indicate that DBM 2198 and other AZPSONs may prove useful in the further development of safe and effective AIDS-therapeutic drugs against a broad spectrum of HIV-1 variants.


Sign in / Sign up

Export Citation Format

Share Document