ChemInform Abstract: A Model Study on the Mechanism of Inhibition of Fatty Acyl Desaturases by Cyclopropene Fatty Acids.

ChemInform ◽  
2010 ◽  
Vol 29 (46) ◽  
pp. no-no
Author(s):  
J. QUINTANA ◽  
M. BARROT ◽  
G. FABRIAS ◽  
F. CAMPS
Tetrahedron ◽  
1998 ◽  
Vol 54 (34) ◽  
pp. 10187-10198 ◽  
Author(s):  
Jordi Quintana ◽  
Mireia Barrot ◽  
Gemma Fabrias ◽  
Francisco Camps

1984 ◽  
Vol 62 (11) ◽  
pp. 1134-1150 ◽  
Author(s):  
P. M. Macdonald ◽  
B. D. Sykes ◽  
R. N. McElhaney

The orientational order parameters of monofluoropalmitic acids biosynthetically incorporated into membranes of Acholeplasma laidlawii B in the presence of a large excess of a variety of structurally diverse fatty acids have been determined via 19F nuclear magnetic resonance (19F NMR) spectroscopy. It is demonstrated that these monofluoropalmitic acids are relatively nonperturbing membrane probes based upon physical (differential scanning calorimetry), biochemical (membrane lipid analysis), and biological (growth studies) criteria. 19F NMR is shown to convey the same qualitative and quantitative picture of membrane lipid order provided by 2H-NMR techniques and to be sensitive to the structural characteristics of the membrane fatty acyl chains, as well as to the lipid phase transition. Representatives of each naturally occurring class of fatty acyl chain structures, including straight-chain saturated, methyl-branched, monounsaturated, and alicyclic-ring-substituted fatty acids, were studied and the 19F-NMR order parameters were correlated with the lipid phase transitions (determined calorimetrically). The lipid phase transition was the prime determinant of overall orientational order regardless of fatty acid structure. Effects upon orientational order attributable to specific structural substituents were discernible, but were secondary to the effects of the lipid phase transition. In the gel state, relative overall order was directly proportional to the temperature of the particular lipid phase transition. Not only the overall order, but also the order profile across the membrane was sensitive to the presence of particular structural substituents. In particular, in the gel state specific fatty acyl structures demonstrated a characteristic disordering effect in the membrane order profile. These various observations can be merged to provide a unified picture of the manner in which fatty acyl chain chemistry modulates the physical state of membrane lipids.


2001 ◽  
Vol 281 (6) ◽  
pp. G1333-G1339 ◽  
Author(s):  
Janardan K. Reddy

Peroxisomes are involved in the β-oxidation chain shortening of long-chain and very-long-chain fatty acyl-CoAs, long-chain dicarboxylyl-CoAs, the CoA esters of eicosanoids, 2-methyl-branched fatty acyl-CoAs, and the CoA esters of the bile acid intermediates, and in the process, they generate H2O2. There are two complete sets of β-oxidation enzymes present in peroxisomes, with each set consisting of three distinct enzymes. The classic PPARα-regulated and inducible set participates in the β-oxidation of straight-chain fatty acids, whereas the second noninducible set acts on branched-chain fatty acids. Long-chain and very-long-chain fatty acids are also metabolized by the cytochrome P-450 CYP4A ω-oxidation system to dicarboxylic acids that serve as substrates for peroxisomal β-oxidation. Evidence derived from mouse models of PPARα and peroxisomal β-oxidation deficiency highlights the critical importance of the defects in PPARα-inducible β-oxidation in energy metabolism and in the development of steatohepatitis.


1988 ◽  
Vol 253 (2) ◽  
pp. 417-424 ◽  
Author(s):  
C J Field ◽  
E A Ryan ◽  
A B Thomson ◽  
M T Clandinin

Control and diabetic rats were fed on semi-purified high-fat diets providing a polyunsaturated/saturated fatty acid ratio (P/S) of 1.0 or 0.25, to examine the effect of diet on the fatty acid composition of major phospholipids of the adipocyte plasma membrane. Feeding the high-P/S diet (P/S = 1.0) compared with the low-P/S diet (P/S = 0.25) increased the content of polyunsaturated fatty acids in membrane phospholipids in both control and diabetic animals. The diabetic state decreased the content of polyunsaturated fatty acids, particularly arachidonic acid, in adipocyte membrane phospholipids. The decrease in arachidonic acid in membrane phospholipids of diabetic animals tended to be normalized to within the control values when high-P/S diets were given. For control animals, altered plasma-membrane composition was associated with change in insulin binding, suggesting that change in plasma-membrane composition may have physiological consequences for insulin-stimulated functions in the adipocyte.


1970 ◽  
Vol 23 (3) ◽  
pp. 657 ◽  
Author(s):  
Joan M Bain ◽  
Janice M Hall

Two storage disorders, "pink white" and "pasty yolk" are known to develop in eggs from hens with cyclopropene fatty acids (e.g. malvalic and sterculic acid) in their diet. The pink white condition is related to increased diffusion processes in the egg during storage. The pasty yolk condition is related to an increase in the proportion of saturated to unsaturated fatty acids in the yolk. The change in texture becomes evident during storage at normal temperature, but can be induced quickly in any affected egg, even when new-laid, by low temperature. The present investigations were carried out to see if the development of these defects could be related to any structural differences detectable in eggs from hens fed a cyclopropene compound.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Vincent G DeMarco ◽  
David A Ford ◽  
Erik Henriksen ◽  
Annayya Aroor ◽  
Javad Habibi ◽  
...  

Myocardial accumulation of fatty acids and lipid intermediates may contribute to cardiac dysfunction, but the interrelationship between different lipid species to diastolic dysfunction is not clearly understood. Herein, we examined changes in levels and composition of different lipid species during the progression to diastolic dysfunction in a clinically relevant model of obese insulin-resistant db/db mice at 12 and 15 wks of age. Obese db/db mice manifested loss of circadian BP dipping and diastolic dysfunction at 15 wks. Myocardial lipidomic analysis demonstrated elevated ceramides and fatty acids in db/db at 12 wks, but their levels were decreased at 15 wk and this was accompanied by increased fatty acid oxidation and enhanced production of reactive oxygen species. Triacylglyceride and diacylglyceride levels remained elevated at both 12 and 15 wk, but their composition changed to consist of more saturated and less unsaturated fatty acyl at 15 wks of age compared to 12 wk. Dysregulation of phospholipid metabolism persisted at 15 wk in db/db. Changes in triacylglyceride and diacylglyceride composition, phospholipid metabolism, β-oxidation, and oxidative stress that are temporally related to non-dipping of BP and diastolic dysfunction suggest a switch in metabolism of lipid intermediates contributes to the development of diastolic dysfunction in over-nutrition.


Sign in / Sign up

Export Citation Format

Share Document