ChemInform Abstract: Chelation-Assisted Cross-Coupling of Anilines Through in situ Activation as Diazonium Salts with Boronic Acids under Ligand-, Base-, and Salt-Free Conditions.

ChemInform ◽  
2013 ◽  
Vol 44 (48) ◽  
pp. no-no
Author(s):  
Roxan Joncour ◽  
Nicolas Susperregui ◽  
Noel Pinaud ◽  
Karinne Miqueu ◽  
Eric Fouquet ◽  
...  
2013 ◽  
Vol 19 (28) ◽  
pp. 9291-9296 ◽  
Author(s):  
Roxan Joncour ◽  
Nicolas Susperregui ◽  
Noël Pinaud ◽  
Karinne Miqueu ◽  
Eric Fouquet ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (70) ◽  
pp. 40000-40015 ◽  
Author(s):  
Nedra Touj ◽  
Abdullah S. Al-Ayed ◽  
Mathieu Sauthier ◽  
Lamjed Mansour ◽  
Abdel Halim Harrath ◽  
...  

The in situ prepared four component system Pd(OAc)2, 1,3-dialkylbenzimidazolium halides 2a–i and 4a–i, K2CO3 under CO atmosphere catalyses carbonylative cross-coupling reaction of 2-bromopyridine with various boronic acids to yield unsymmetrical arylpyridine ketones.


2016 ◽  
Vol 52 (65) ◽  
pp. 10040-10043 ◽  
Author(s):  
Thomas Cornilleau ◽  
Philippe Hermange ◽  
Eric Fouquet

Combining gold catalysis and photoredox processes allowed the synthesis of biaryl compounds from diazonium salts and boronic acids under mild conditions.


2017 ◽  
Vol 359 (9) ◽  
pp. 1522-1528 ◽  
Author(s):  
Sina Witzel ◽  
Jin Xie ◽  
Matthias Rudolph ◽  
A. Stephen K. Hashmi

Synthesis ◽  
2020 ◽  
Author(s):  
Zachary J. Gale-Day

AbstractTraditionally, metal-catalyzed cross-coupling reactions rely on stable but expensive metals, such as palladium. However, the recent development of synthetic organic electrochemistry allows for in situ redox manipulations, expanding the use of cheaper, abundant and sustainable metals, such as nickel and copper as efficient cross-coupling catalysts. This short review covers the recent advances in metal-catalyzed electrochemical coupling reactions, with a focus on reactions of sp2 electrophiles and nucleophiles with sp3 coupling partners to form both C–C and C–heteroatom bonds.1 Introduction2 Nickel-Catalyzed C–C sp2–sp3 Coupling Reactions3 Coupling of Aryl Groups with Heteroatomic Nuclei4 Conclusion


2020 ◽  
Author(s):  
Aidan Kelly ◽  
Peng-Jui (Ruby) Chen ◽  
Jenna Klubnick ◽  
Daniel J. Blair ◽  
Martin D. Burke

<div> <div> <div> <p>Existing methods for making MIDA boronates require harsh conditions and complex procedures to achieve dehydration. Here we disclose that a pre-dried form of MIDA, MIDA anhydride, acts as both a source of the MIDA ligand and an in situ desiccant to enable a mild and simple MIDA boronate synthesis procedure. This method expands the range of sensitive boronic acids that can be converted into their MIDA boronate counterparts. Further utilizing unique properties of MIDA boronates, we have developed a MIDA Boronate Maker Kit which enables the direct preparation and purification of MIDA boronates from boronic acids using only heating and centrifuge equipment that is widely available in labs that do not specialize in organic synthesis. </p> </div> </div> </div>


2018 ◽  
Author(s):  
Roshna Vakkeel ◽  
Aleeza Farrukh ◽  
Aranzazu del Campo

In order to study how dynamic changes of α5β1 integrin engagement affect cellular behaviour, photoactivatable derivatives of α5β1 specific ligands are presented in this article. The presence of the photoremovable protecting group (PRPG) introduced at a relevant position for integrin recognition, temporally inhibits ligand bioactivity. Light exposure at cell-compatible dose efficiently cleaves the PRPG and restores functionality. Selective cell response (attachment, spreading, migration) to the activated ligand on the surface is achieved upon controlled exposure. Spatial and temporal control of the cellular response is demonstrated, including the possibility to in situ activation. Photoactivatable integrin-selective ligands in model microenvironments will allow the study of cellular behavior in response to changes in the activation of individual integrins as consequence of dynamic variations of matrix composition.


2018 ◽  
Author(s):  
Yaroslav Boyko ◽  
Christopher Huck ◽  
David Sarlah

<div>The first total synthesis of rhabdastrellic acid A, a highly cytotoxic isomalabaricane triterpenoid, has been accomplished in a linear sequence of 14 steps from commercial geranylacetone. The prominently strained <i>trans-syn-trans</i>-perhydrobenz[<i>e</i>]indene core characteristic of the isomalabaricanes is efficiently accessed in a selective manner for the first time through a rapid, complexity-generating sequence incorporating a reductive radical polyene cyclization, an unprecedented oxidative Rautenstrauch cycloisomerization, and umpolung 𝛼-substitution of a <i>p</i>-toluenesulfonylhydrazone with in situ reductive transposition. A late-stage cross-coupling in concert with a modular approach to polyunsaturated side chains renders this a general strategy for the synthesis of numerous family members of these synthetically challenging and hitherto inaccessible marine triterpenoids.</div>


Author(s):  
Pan Xie ◽  
Cheng Xue ◽  
Cancan Wang ◽  
Dongdong Du ◽  
Sanshan Shi

A CF3SO2Na/Pd(OAc)2 co-catalyzed strategy is developed to produce aryl ketones via visible-light-induced decarboxylative cross-coupling of α-oxocarboxylic acids and aryl boronic acids. This process was perfomed under air at room temperature,...


Sign in / Sign up

Export Citation Format

Share Document