ChemInform Abstract: The Novel Approach to Indole Alkaloids by Using Pd(II)-Catalyzed Cyclization.

ChemInform ◽  
2015 ◽  
Vol 46 (17) ◽  
pp. no-no
Author(s):  
Hajime Yokoyama ◽  
Takayoshi Kubo ◽  
Yosuke Matsumura ◽  
Junichi Hosokawa ◽  
Masahiro Miyazawa ◽  
...  
Tetrahedron ◽  
2014 ◽  
Vol 70 (50) ◽  
pp. 9530-9535 ◽  
Author(s):  
Hajime Yokoyama ◽  
Takayoshi Kubo ◽  
Yosuke Matsumura ◽  
Junichi Hosokawa ◽  
Masahiro Miyazawa ◽  
...  

2020 ◽  
Author(s):  
Elaine Gallagher ◽  
Bas Verplanken ◽  
Ian Walker

Social norms have been shown to be an effective behaviour change mechanism across diverse behaviours, demonstrated from classical studies to more recent behaviour change research. Much of this research has focused on environmentally impactful actions. Social norms are typically utilised for behaviour change in social contexts, which facilitates the important element of the behaviour being visible to the referent group. This ensures that behaviours can be learned through observation and that deviations from the acceptable behaviour can be easily sanctioned or approved by the referent group. There has been little focus on how effective social norms are in private or non-social contexts, despite a multitude of environmentally impactful behaviours occurring in the home, for example. The current study took the novel approach to explore if private behaviours are important in the context of normative influence, and if the lack of a referent groups results in inaccurate normative perceptions and misguided behaviours. Findings demonstrated variance in normative perceptions of private behaviours, and that these misperceptions may influence behaviour. These behaviours are deemed to be more environmentally harmful, and respondents are less comfortable with these behaviours being visible to others, than non-private behaviours. The research reveals the importance of focusing on private behaviours, which have been largely overlooked in the normative influence literature.


2021 ◽  
Vol 11 (2) ◽  
pp. 674
Author(s):  
Marianna Koctúrová ◽  
Jozef Juhár

With the ever-progressing development in the field of computational and analytical science the last decade has seen a big improvement in the accuracy of electroencephalography (EEG) technology. Studies try to examine possibilities to use high dimensional EEG data as a source for Brain to Computer Interface. Applications of EEG Brain to computer interface vary from emotion recognition, simple computer/device control, speech recognition up to Intelligent Prosthesis. Our research presented in this paper was focused on the study of the problematic speech activity detection using EEG data. The novel approach used in this research involved the use visual stimuli, such as reading and colour naming, and signals of speech activity detectable by EEG technology. Our proposed solution is based on a shallow Feed-Forward Artificial Neural Network with only 100 hidden neurons. Standard features such as signal energy, standard deviation, RMS, skewness, kurtosis were calculated from the original signal from 16 EEG electrodes. The novel approach in the field of Brain to computer interface applications was utilised to calculated additional set of features from the minimum phase signal. Our experimental results demonstrated F1 score of 86.80% and 83.69% speech detection accuracy based on the analysis of EEG signal from single subject and cross-subject models respectively. The importance of these results lies in the novel utilisation of the mobile device to record the nerve signals which can serve as the stepping stone for the transfer of Brain to computer interface technology from technology from a controlled environment to the real-life conditions.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 815
Author(s):  
Przemysław Domaszewski ◽  
Paweł Pakosz ◽  
Mariusz Konieczny ◽  
Dawid Bączkowicz ◽  
Ewa Sadowska-Krępa

Studies on muscle activation time in sport after caffeine supplementation confirmed the effectiveness of caffeine. The novel approach was to determine whether a dose of 9 mg/kg/ body mass (b.m.) of caffeine affects the changes of contraction time and the displacement of electrically stimulated muscle (gastrocnemius medialis) in professional athletes who regularly consume products rich in caffeine and do not comply with the caffeine discontinuation period requirements. The study included 40 professional male handball players (age = 23.13 ± 3.51, b.m. = 93.51 ± 15.70 kg, height 191 ± 7.72, BMI = 25.89 ± 3.10). The analysis showed that in the experimental group the values of examined parameters were significantly reduced (p ≤ 0.001) (contraction time: before = 20.60 ± 2.58 ms/ after = 18.43 ± 3.05 ms; maximal displacement: before = 2.32 ± 0.80 mm/after = 1.69 ± 0.51 mm). No significant changes were found in the placebo group. The main achievement of this research was to demonstrate that caffeine at a dose of 9 mg/kg in professional athletes who regularly consume products rich in caffeine has a direct positive effect on the mechanical activity of skeletal muscle stimulated by an electric pulse.


2001 ◽  
Vol 711 ◽  
Author(s):  
Alexander Zelikin ◽  
Venkatram Shastri ◽  
David Lynn ◽  
Jian Farhadi ◽  
Ivan Martin ◽  
...  

ABSTRACTConductive polymers such as polypyrrole (Ppy) are potentially useful as an active interface for altering cellular processes and function. Their utilization in medically related applications however have been substantially held back by their non-degradable nature. Herein we report a novel approach to creation of bioerodible polypyrroles via modification of pyrrole beta-carbon with an ionizable moiety. It has been shown that the erosion rate of acid-bearing derivative of polypyrrole increases with pH, which is consistent with the pH dependent ionization of carboxylic acid group. The novel paradigm proposed for the creation of bioerodible polypyrroles allows for simple and efficient control over the erosion rate of the substrate independent of the polymer chain length, via the choice of the terminal ionizable group and its concentration along the polymer backbone.


2013 ◽  
Vol 1493 ◽  
pp. 91-96 ◽  
Author(s):  
Urs Aeberhard

ABSTRACTIn this paper, a quantum-kinetic equivalent of Shockley-Read-Hall recombination is derived within the non-equilibrium Green's function formalism for a photovoltaic system with selectively contacted extended-state absorbers and a localized deep defect state in the energy gap. The novel approach is tested on a homogeneous bulk absorber and then applied to a thin film photo-diode with large built-in field in the defect-rich absorber region. While the quantum-kinetic treatment reproduces the semi-classical characteristics for a bulk absorber in quasi-equilibrium conditions, for which the latter picture is valid, it reveals in the thin film case non-classical characteristics of recombination enhanced by tunneling into field-induced sub-gap states.


2021 ◽  
Author(s):  
Moez Guettari ◽  
Ahmed El Aferni

Efforts to combat the Covid-19 pandemic have not been limited to the processes of vaccine production, but they first began to analyze the dynamics of the epidemic’s spread so that they could adopt barrier measures to bypass the spread. To do this, the works of modeling, predicting and analyzing the spread of the virus continue to increase day after day. In this context, the aim of this chapter is to analyze the propagation of the Coronavirus pandemic by using the percolation theory. In fact, an analogy was established between the electrical conductivity of reverse micelles under temperature variation and the spread of the Coronavirus pandemic. So, the percolation theory was used to describe the cumulate infected people versus time by using a modified Sigmoid Boltzman equation (MSBE) and several quantities are introduced such as: the pandemic percolation time, the maximum infected people, the time constant and the characteristic contamination frequency deduced from Arrhenius equation. Scaling laws and critical exponents are introduced to describe the spread nature near the percolation time. The speed of propagation is also proposed and expressed. The novel approach based on the percolation theory was used to study the Coronavirus (Covid-19) spread in five countries: France, Italy, Germany, China and Tunisia, during 6 months of the pandemic spread (the first wave). So, an explicit expression connecting the number of people infected versus time is proposed to analyze the pandemic percolation. The reported MSBE fit results for the studied countries showed high accuracy.


Sign in / Sign up

Export Citation Format

Share Document