Disturbance of the equilibrium in ethyl acetoacetate with homemade bromine water

CHEMKON ◽  
2021 ◽  
Author(s):  
Andreas Schank ◽  
Simon Schundelmeier ◽  
Matthias Kremer
2019 ◽  
Vol 16 (5) ◽  
pp. 776-786 ◽  
Author(s):  
Deepa ◽  
Geeta D. Yadav ◽  
Mohd J. Aalam ◽  
Pooja Chaudhary ◽  
Surendra Singh

Objective:DABCO salts were evaluated as catalysts for the Biginelli reaction between 4- methoxybenzaldehyde, urea and ethyl acetoacetate under solvent-free conditions. 1,4-Diazabicyclo [2.2.2] octane triflate was found to be a simple, inexpensive, highly efficient catalyst for Biginelli reaction for a variety aromatic aldehyde with urea and ethyl acetoacetate at 80°C afforded corresponding 3,4-dihydropyrimidinones in 50-99% yields after 30-120 minutes. 1,3-Cyclohexadione was used in place of ethyl acetoacetate in the absence of urea this methodology is giving hexahydro xanthene derivatives in good to excellent yields after 3-4 hours.Methods:DABCO salt 4 (5 mol%), 4-methoxybenzaldehyde (0.73 mmol) and urea (0.73 mmol) were stirred for 10 minutes at 80°C, then ethyl acetoacetate (1.5 equiv.) was added and reaction mixture was stirred at 80°C for specified time. The resulting solution was stirred continuously and progress of the reaction was followed by TLC. The crude reaction mixture was purified by flash column chromatography on silica gel (hexane/ethyl acetate (1:2)) to give pure desired product.Results:Reaction conditions of the Biginelli reaction were optimized using 4-methoxybenzaldehyde (0.73 mmol), urea (0.73 mmol), and ethyl acetoacetate (5 equiv.) as model substrates catalyzed by 1,4-Diazabicyclo [2.2.2] octane triflate (5 mol%) in a different solvents, screening of different catalysts and different temperatures. Neat condition was found to be the best for the Biginelli condensation and corresponding 3,4- dihydropyrimidinones was obtained in good to excellent yields. When the reaction was carried out with benzaldehyde derivatives and cyclohexane-1,3-dione in place of ethyl acetoacetate in the absence of urea, solely corresponding hexahydro xanthene derivatives were obtained in 61-91% yields.Conclusion:In conclusion, we have applied salts of 1,4-Diaza-bicyclo [2.2.2] octane as catalysts in the Biginelli condensation and corresponding 3,4-dihydropyrimidinones were obtained in 50- 99% yields under solvent free conditions. This methodology is having advantages like simple work-up; low loading of catalyst and reaction was performed at moderate temperature under solvent-free conditions.


2020 ◽  
Vol 17 ◽  
Author(s):  
Ravi Bansal ◽  
Pradeep K. Soni ◽  
Neha Gupta ◽  
Sameer S. Bhagyawant ◽  
Anand K. Halve

Aims: In this article we have developed an eco-friendly one-pot multi-component reaction methodology was employed for the green synthesis of functionalized pyrazole derivatives viz cyclo-condensation of aromatic aldehydes, ethyl acetoacetate and phenyl hydrazine and/or hydrazine hydrate in the presence of cetyltrimethylammoniumbromide (CTAB) at 90°C temperature in aqueous medium. Method: In the present protocol we developed a green method for the synthesis of functionalized pyrazole derivatives through one-pot, multi-component cyclo-condensation of aromatic aldehydes, phenyl hydrazine or hydrazine hydrate and ethyl acetoacetate using cetyltrimethylammoniumbromide (CTAB) as a catalyst in water as solvent. Our methodology confers advantages such as short reaction time, atom economy, purification of product without using column chromatographic and hazardous solvent. The reaction is being catalyzed by cetyltrimethylammoniumbromide (CTAB) and thus products are formed under the green reaction conditions. Results: Initially the reaction of benzaldehyde and phenylhydrazine with ethyl acetoacetate was carried out in water at room temperature in the absence of the catalyst; no product was obtained after 24 h (Table 1 entry 1). When the reaction was carried out using L-proline as catalyst in ethanol at 70°C the yield of product was 20. Conclusion: This research not only provides a green and efficient method for the synthesis of sulfinic esters but also shows new applications of electrochemistry in organic synthesis. We consider that this green and efficient synthetic protocol used to prepare sulfinic esters will have good applications in future. In conclusion, we have developed successfully a green and efficient one-pot multi-component methodology for the synthesis of substituted pyrazoles using CTAB as a catalyst in water as solvent with excellent yields. Purifications of compounds were achieved without the use of traditional chromatographic procedures. This methodology has advantages of operational simplicity, clean reaction profiles and relatively broad scope which make it more attractive for the diversity oriented synthesis of these heterocyclic libraries. In this methodology we suggest the further alternative possibility for formation of substituted pyrazoles. The compound 7h can be used as an anticancer drug in pharma industry.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 418
Author(s):  
Shelley M. Horne ◽  
Angel Ugrinov ◽  
Birgit M. Prüβ

β-Phenylethylamine hydrochloride (PEA-HCl) and ethyl acetoacetate (EAA) are anti-microbials with applications in food processing. As food anti-microbials, the compounds will have to withstand the cooking process without changing to toxic compounds. With this Communication, we address the question of whether PEA and EAA are altered when heated to 73.9 °C or 93.3 °C. A combination of gas chromatography and mass spectrometry was used to analyze solutions of PEA(-HCl) or EAA in beef broth or water. In addition, the anti-microbial activity of PEA-HCl and EAA was compared between heated and unheated samples at a range of concentrations. The gas chromatograms of PEA(-HCl) and EAA showed one peak at early retention times that did not differ between the heated and unheated samples. The mass spectra for PEA and EAA were near identical to those from a spectral database and did not show any differences between the heated and unheated samples. We conclude that PEA(-HCl) and EAA formed pure solutions and were not altered during the heating process. In addition, the anti-microbial activity of PEA-HCl and EAA did not change after the heating of the compounds. Regardless of temperature, the minimal inhibitory concentrations (MICs) for PEA-HCl were 20.75 mmol mL−1 for Escherichia coli and Salmonella enterica serotype Typhimurium. For EAA, the MICs were 23.4 mmol mL−1 for E. coli and 15.6 mmol mL−1 for S. enterica.


1999 ◽  
Vol 23 (3) ◽  
pp. 174-175
Author(s):  
E. Abdel-Ghani

The orientation of cyclization of the reaction of methyl aroylacrylate (1) and aroylacrylic acid (8) with ethyl acetoacetate and/or thiourea leading to the formation of 4-aroylmethylcyclopentane-1,3-dione (2) 5-aryl-3-oxocyclohexene-1,2-dicarboxylic acid (9), 2-imino-5-aroylmethylthiazolidin-4-one (11) and 6-aryl-2-sulfonylpyrimidine-4-carboxylic acid (14) depends on the medium employed; some compounds show moderate antiviral activities against tobacco necrosis virus.


RSC Advances ◽  
2021 ◽  
Vol 11 (18) ◽  
pp. 10497-10511
Author(s):  
Mehraneh Aghaei-Hashjin ◽  
Asieh Yahyazadeh ◽  
Esmayeel Abbaspour-Gilandeh

Polyhydroquinolines were obtained from a sequential four-component reaction between dimedone or 1,3-cyclohexandione, ethyl acetoacetate, or methyl acetoacetate as a β-ketoester, aldehydes, and ammonium acetate, with Mo@GAA-Fe3O4 MNPs as a green nanocatalyst.


ChemInform ◽  
2010 ◽  
Vol 24 (46) ◽  
pp. no-no
Author(s):  
L. Y. JAYASINGHE ◽  
A. J. SMALLRIDGE ◽  
M. A. TREWHELLA

2001 ◽  
Vol 42 (4) ◽  
pp. 663-664 ◽  
Author(s):  
Thierry Lamouille ◽  
Christine Saluzzo ◽  
Rob ter Halle ◽  
Fredéric Le Guyader ◽  
Marc Lemaire
Keyword(s):  

1956 ◽  
Vol 78 (22) ◽  
pp. 5752-5756 ◽  
Author(s):  
Clinton M. Kelley ◽  
H. V. Tartar
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document