scholarly journals Septin‐associated proteins Aim44 and Nis1 traffic between the bud neck and the nucleus in the yeast Saccharomyces cerevisiae

Cytoskeleton ◽  
2018 ◽  
Vol 76 (1) ◽  
pp. 15-32 ◽  
Author(s):  
Adam M. Perez ◽  
Jeremy Thorner
2005 ◽  
Vol 16 (8) ◽  
pp. 3455-3466 ◽  
Author(s):  
Lukasz Kozubowski ◽  
Jennifer R. Larson ◽  
Kelly Tatchell

In the yeast Saccharomyces cerevisiae, septins form a scaffold in the shape of a ring at the future budding site that rearranges into a collar at the mother-bud neck. Many proteins bind asymmetrically to the septin collar. We found that the protein Bni4-CFP was located on the exterior of the septin ring before budding and on the mother side of the collar after budding, whereas the protein kinase Kcc4-YFP was located on the interior of the septin ring before budding and moved into the bud during the formation of the septin collar. Unbudded cells treated with the actin inhibitor latrunculin-A assembled cortical caps of septins on which Bni4-CFP and Kcc4-YFP colocalized. Bni4-CFP and Kcc4-YFP also colocalized on cortical caps of septins found in strains deleted for the genes encoding the GTPase activating proteins of Cdc42 (RGA1, RGA2, and BEM3). However, Bni4-CFP and Kcc4-YFP were still partially separated in mutants (gin4, elm1, cla4, and cdc3-1) in which septin morphology was severely disrupted in other ways. These observations provide clues to the mechanisms for the asymmetric localization of septin-associated proteins.


1988 ◽  
Vol 8 (3) ◽  
pp. 1282-1289
Author(s):  
W Haggren ◽  
D Kolodrubetz

The high-mobility-group (HMG) proteins, a group of nonhistone chromatin-associated proteins, have been extensively characterized in higher eucaryotic cells. To test the biological function of an HMG protein, we have cloned and mutagenized a gene encoding an HMG-like protein from the yeast Saccharomyces cerevisiae. A yeast genomic DNA library was screened with an oligonucleotide designed to hybridize to any yeast gene containing an amino acid sequence conserved in several higher eucaryotic HMG proteins. DNA sequencing and Northern (RNA) blot analysis revealed that one gene, called ACP2 (acidic protein 2), synthesizes a poly(A)+ RNA in S. cerevisiae which encodes a 27,000-molecular-weight protein whose amino acid sequence is homologous to those of calf HMG1 and HMG2 and trout HMGT proteins. Standard procedures were used to construct a diploid yeast strain in which one copy of the ACP2 gene was mutated by replacement with the URA3 gene. When this diploid was sporulated and dissected, only half of the spores were viable. About half of the nonviable spores proceeded through two or three cell divisions and then stopped dividing; the rest did not germinate at all. None of the viable spores contained the mutant ACP2 gene, thus proving that the protein encoded by ACP2 is required for cell viability. The results presented here demonstrate that an HMG-like protein has an essential physiological function.


2001 ◽  
Vol 12 (9) ◽  
pp. 2614-2628 ◽  
Author(s):  
Yunrui Du ◽  
Marc Pypaert ◽  
Peter Novick ◽  
Susan Ferro-Novick

In the yeast Saccharomyces cerevisiae, the endoplasmic reticulum (ER) is found at the periphery of the cell and around the nucleus. The segregation of ER through the mother-bud neck may occur by more than one mechanism because perinuclear, but not peripheral ER, requires microtubules for this event. To identify genes whose products are required for cortical ER inheritance, we have used a Tn3-based transposon library to mutagenize cells expressing a green fluorescent protein-tagged ER marker protein (Hmg1p). This approach has revealed that AUX1/SWA2plays a role in ER inheritance. The COOH terminus of Aux1p/Swa2p contains a J-domain that is highly related to the J-domain of auxilin, which stimulates the uncoating of clathrin-coated vesicles. Deletion of the J-domain of Aux1p/Swa2p leads to vacuole fragmentation and membrane accumulation but does not affect the migration of peripheral ER into daughter cells. These findings suggest that Aux1p/Swa2p may be a bifunctional protein with roles in membrane traffic and cortical ER inheritance. In support of this hypothesis, we find that Aux1p/Swa2p localizes to ER membranes.


1993 ◽  
Vol 90 (23) ◽  
pp. 11172-11176 ◽  
Author(s):  
D Eshel ◽  
L A Urrestarazu ◽  
S Vissers ◽  
J C Jauniaux ◽  
J C van Vliet-Reedijk ◽  
...  

We have identified the gene DYN1, which encodes the heavy chain of cytoplasmic dynein in the yeast Saccharomyces cerevisiae. The predicted amino acid sequence (M(r) 471,305) reveals the presence of four P-loop motifs, as in all dyneins known so far, and has 28% overall identity to the dynein heavy chain of Dictyostelium [Koonce, M. P., Grissom, P. M. & McIntosh, J. R. (1992) J. Cell Biol. 119, 1597-1604] with 40% identity in the putative motor domain. Disruption of DYN1 causes misalignment of the spindle relative to the bud neck during cell division and results in abnormal distribution of the dividing nuclei between the mother cell and the bud. Cytoplasmic dynein, by generating force along cytoplasmic microtubules, may play an important role in the proper alignment of the mitotic spindle in yeast.


2009 ◽  
Vol 20 (14) ◽  
pp. 3239-3250 ◽  
Author(s):  
Jian Zou ◽  
Helena Friesen ◽  
Jennifer Larson ◽  
Dongqing Huang ◽  
Mike Cox ◽  
...  

In the budding yeast Saccharomyces cerevisiae, the G1-specific cyclin-dependent kinases (Cdks) Cln1,2-Cdc28 and Pcl1,2-Pho85 are essential for ensuring that DNA replication and cell division are properly linked to cell polarity and bud morphogenesis. However, the redundancy of Cdks and cyclins means that identification of relevant Cdk substrates remains a significant challenge. We used array-based genetic screens (synthetic genetic array or SGA analysis) to dissect redundant pathways associated with G1 cyclins and identified Bni4 as a substrate of the Pcl1- and Pcl2-Pho85 kinases. BNI4 encodes an adaptor protein that targets several proteins to the bud neck. Deletion of BNI4 results in severe growth defects in the absence of the Cdc28 cyclins Cln1 and Cln2, and overexpression of BNI4 is toxic in yeast cells lacking the Pho85 cyclins Pcl1 and Pcl2. Phosphorylation of Bni4 by Pcl-Pho85 is necessary for its localization to the bud neck, and the bud neck structure can be disrupted by overexpressing BNI4 in pcl1Δpcl2Δ mutant cells. Our data suggest that misregulated Bni4 may bind in an uncontrolled manner to an essential component that resides at the bud neck, causing catastrophic morphogenesis defects.


1997 ◽  
Vol 138 (5) ◽  
pp. 1041-1053 ◽  
Author(s):  
Frank R. Cottingham ◽  
M. Andrew Hoyt

Proper positioning of the mitotic spindle is often essential for cell division and differentiation processes. The asymmetric cell division characteristic of budding yeast, Saccharomyces cerevisiae, requires that the spindle be positioned at the mother–bud neck and oriented along the mother–bud axis. The single dynein motor encoded by the S. cerevisiae genome performs an important but nonessential spindle-positioning role. We demonstrate that kinesin-related Kip3p makes a major contribution to spindle positioning in the absence of dynein. The elimination of Kip3p function in dyn1Δ cells severely compromised spindle movement to the mother–bud neck. In dyn1Δ cells that had completed positioning, elimination of Kip3p function caused spindles to mislocalize to distal positions in mother cell bodies. We also demonstrate that the spindle-positioning defects exhibited by dyn1 kip3 cells are caused, to a large extent, by the actions of kinesin- related Kip2p. Microtubules in kip2Δ cells were shorter and more sensitive to benomyl than wild-type, in contrast to the longer and benomyl-resistant microtubules found in dyn1Δ and kip3Δ cells. Most significantly, the deletion of KIP2 greatly suppressed the spindle localization defect and slow growth exhibited by dyn1 kip3 cells. Likewise, induced expression of KIP2 caused spindles to mislocalize in cells deficient for dynein and Kip3p. Our findings indicate that Kip2p participates in normal spindle positioning but antagonizes a positioning mechanism acting in dyn1 kip3 cells. The observation that deletion of KIP2 could also suppress the inviability of dyn1Δ kar3Δ cells suggests that kinesin-related Kar3p also contributes to spindle positioning.


1988 ◽  
Vol 8 (3) ◽  
pp. 1282-1289 ◽  
Author(s):  
W Haggren ◽  
D Kolodrubetz

The high-mobility-group (HMG) proteins, a group of nonhistone chromatin-associated proteins, have been extensively characterized in higher eucaryotic cells. To test the biological function of an HMG protein, we have cloned and mutagenized a gene encoding an HMG-like protein from the yeast Saccharomyces cerevisiae. A yeast genomic DNA library was screened with an oligonucleotide designed to hybridize to any yeast gene containing an amino acid sequence conserved in several higher eucaryotic HMG proteins. DNA sequencing and Northern (RNA) blot analysis revealed that one gene, called ACP2 (acidic protein 2), synthesizes a poly(A)+ RNA in S. cerevisiae which encodes a 27,000-molecular-weight protein whose amino acid sequence is homologous to those of calf HMG1 and HMG2 and trout HMGT proteins. Standard procedures were used to construct a diploid yeast strain in which one copy of the ACP2 gene was mutated by replacement with the URA3 gene. When this diploid was sporulated and dissected, only half of the spores were viable. About half of the nonviable spores proceeded through two or three cell divisions and then stopped dividing; the rest did not germinate at all. None of the viable spores contained the mutant ACP2 gene, thus proving that the protein encoded by ACP2 is required for cell viability. The results presented here demonstrate that an HMG-like protein has an essential physiological function.


2006 ◽  
Vol 5 (2) ◽  
pp. 248-261 ◽  
Author(s):  
Lotte Steffensen ◽  
Per Amstrup Pedersen

ABSTRACT This paper describes the first physiological response at the translational level towards heterologous protein production in Saccharomyces cerevisiae. In yeast, the phosphorylation of eukaryotic initiation factor 2α (eIF-2α) by Gcn2p protein kinase mediates derepression of GCN4 mRNA translation. Gcn4p is a transcription factor initially found to be required for transcriptional induction of genes responsible for amino acid or purine biosynthesis. Using various GCN4-lacZ fusions, knockout yeast strains, and anti-eIF-2α-P/anti-eIF-2α antibodies, we observed that heterologous expression of the membrane-bound α1β1 Na,K-ATPase from pig kidney, the rat pituitary adenylate cyclase seven-transmembrane-domain receptor, or a 401-residue soluble part of the Na,K-ATPase α1 subunit derepressed GCN4 mRNA translation up to 70-fold. GCN4 translation was very sensitive to the presence of heterologous protein, as a density of 1‰ of heterologous membrane protein derepressed translation maximally. Translational derepression of GCN4 was not triggered by misfolding in the endoplasmic reticulum, as expression of the wild type or temperature-sensitive folding mutants of the Na,K-ATPase increased GCN4 translation to the same extent. In situ activity of the heterologously expressed protein was not required for derepression of GCN4 mRNA translation, as illustrated by the expression of an enzymatically inactive Na,K-ATPase. Two- to threefold overexpression of the highly abundant and plasma membrane-located endogenous H-ATPase also induced GCN4 translation. Derepression of GCN4 translation required phosphorylation of eIF-2α, the tRNA binding domain of Gcn2p, and the ribosome-associated proteins Gcn1p and Gcn20p. The increase in Gcn4p density in response to heterologous expression did not induce transcription from the HIS4 promoter, a traditional Gcn4p target.


1992 ◽  
Vol 119 (2) ◽  
pp. 379-388 ◽  
Author(s):  
D S Sullivan ◽  
T C Huffaker

tub2-401 is a cold-sensitive allele of TUB2, the sole gene encoding beta-tubulin in the yeast, Saccharomyces cerevisiae. At 18 degrees C, tub2-401 cells are able to assemble spindle microtubules but lack astral microtubules. Under these conditions, movement of the spindle to the bud neck is blocked. However, spindle elongation and chromosome separation are unimpeded and occur entirely within the mother cell. Subsequent cytokinesis produces one cell with two nuclei and one cell without a nucleus. The anucleate daughter can not bud. The binucleate daughter proceeds through another cell cycle to produce a cell with four nuclei and another anucleate cell. With additional time in the cold, the number of nuclei in the nucleated cells continues to increase and the percentage of anucleate cells in the population rises. The results indicate that astral microtubules are needed to position the spindle in the bud neck but are not required for spindle elongation at anaphase B. In addition, cell cycle progression does not depend on the location or orientation of the spindle.


Sign in / Sign up

Export Citation Format

Share Document