scholarly journals Translating a Low‐Molecular‐Weight MRI Probe Sensitive to Amino Acid Neurotransmitters into a PAMAM Dendrimer Conjugate: The Impact of Conjugation

ChemNanoMat ◽  
2019 ◽  
Vol 5 (12) ◽  
pp. 1456-1460
Author(s):  
Đorđe Toljić ◽  
Goran Angelovski
2019 ◽  
Vol 55 (79) ◽  
pp. 11924-11927 ◽  
Author(s):  
Đorđe Toljić ◽  
Goran Angelovski

The capability for cooperative binding of a ditopic Gd-based responsive MRI probe was used to advance the sensitivity towards the major excitatory (Glu) and inhibitory (GABA) neurotransmitters over their physiological competitor hydrogencarbonate.


1989 ◽  
Vol 264 (5) ◽  
pp. 2560-2567
Author(s):  
G Camici ◽  
G Manao ◽  
G Cappugi ◽  
A Modesti ◽  
M Stefani ◽  
...  

1988 ◽  
Vol 15 (2) ◽  
pp. 81-84 ◽  
Author(s):  
E. M. Ahmed ◽  
J. A. Applewhite

Abstract Florunner peanut seeds contained five trypsin isoinhibitors. Amino acid profiles of the trypsin inhibitors fraction showed high levels of aspartic acid, half-cystine and serine and low levels of histidine and tyrosine. The molecular weight of the inhibitor was 8.3 KDa. The presence of multiforms of this inhibitor, its low molecular weight and the high amount of half-cystine indicate that peanut trypsin inhibitor is of the Bowman-Birk type.


1979 ◽  
Vol 58 (2_suppl) ◽  
pp. 986-987 ◽  
Author(s):  
A. Belcourt

Pure enamel was prepared using an original microdissection technic. Protein concentration was 375 μg per gram of enamel. Polyacrylamide gel electrophoresis showed a single fast-migrating zone containing a thin double band. Ultracentrifugation studies suggested that the proteins were of low molecular weight or of weak density. Absorption spectra showed a strong absorbance at 260nm. Amino acid analyses yielded a composition of 25% Gly, 13.5% Glu, 11% Ser, 11% Pro, 2% Cys and 2% Hyp. A glucidic content of 15% was estimated and glucose, galactose, mannose and fucose were identified. The organic matrix of enamel seemed to be constituted of two major glycoproteins probably fibrous but different from keratin.


2011 ◽  
Vol 17 (48) ◽  
pp. 13603-13612 ◽  
Author(s):  
Pasquale Curcio ◽  
Florent Allix ◽  
Guillaume Pickaert ◽  
Brigitte Jamart-Grégoire

Pathogens ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 112 ◽  
Author(s):  
Spanic ◽  
Horvat ◽  
Drezner ◽  
Zdunic

The grain yield, as well as the quality and safety of the wheat grains and corresponding malt can be compromised by Fusarium spp. infection. The protein content of the grain affects the chemical composition and enzyme levels of the finished malt. The malting industry demands varieties with good malting and brewing performance, as well as good agronomic performance and disease resistance. The best method of disease control is breeding and selection for resistant varieties. Due to higher requirements for malting wheat worldwide, the goal of this investigation was to explore changes in protein distribution in wheat grains and corresponding malt, which are under higher pressure of Fusarium head blight (FHB) infestation in field conditions. The present study provides new knowledge on the impact of the FHB on the distribution of protein components of naturally Fusarium-infected (control) and Fusarium-inoculated wheat varieties in the grain and the corresponding malt in two consecutive years (2015/2016 and 2016/2017). The results showed that Fusarium infection of the susceptible variety Golubica, decreased total glutenins (5.9%), and both high and low molecular weight glutenin subunits (2.5% and 3.5%, respectively) in wheat grains, compared to control, in 2016. In contrast, gliadins and α-gliadins increased significantly (+7.6% and +5.1%, respectively) in the same variety. Wheat grains of the more resistant variety Vulkan showed an increase of the total glutenins content (+4.3%), and of high and of low molecular weight glutenin subunits (+1.2% and +3.2%, respectively) after Fusarium-inoculation, compared to naturally infected grains in 2016. Susceptible variety Golubica increased total glutenins (+9.1%), and both high and low molecular weight glutenin subunits (+3.5% and +5.6%, respectively) after Fusarium-inoculation in wheat malt, compared to naturally infected malt in 2016. In 2017, when disease pressure was higher than in 2016, there was a tendency in all varieties to increase gliadins and its sub fractions after malting, and to decrease glutenins and its sub fractions in Fusarium-inoculated treatment. In conclusion, FHB dramatically depressed grain yield (up to 37%) and quality (glutenins and high molecular weight subunits) in the susceptible Fusarium variety, which makes it inconvenient for malting.


PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e98921 ◽  
Author(s):  
Ker Y. Cheah ◽  
Gordon S. Howarth ◽  
Keren A. Bindon ◽  
James A. Kennedy ◽  
Susan E. P. Bastian

Sign in / Sign up

Export Citation Format

Share Document