Influence of the substrate temperature on the structural, optical, and electrical properties of tin selenide thin films deposited by thermal evaporation method

2010 ◽  
Vol 45 (1) ◽  
pp. 53-58 ◽  
Author(s):  
N. Kumar ◽  
V. Sharma ◽  
N. Padha ◽  
N. M. Shah ◽  
M. S. Desai ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Peijie Lin ◽  
Sile Lin ◽  
Shuying Cheng ◽  
Jing Ma ◽  
Yunfeng Lai ◽  
...  

Ag-doped In2S3(In2S3:Ag) thin films have been deposited onto glass substrates by a thermal evaporation method. Ag concentration is varied from 0 at.% to 4.78 at.%. The structural, optical, and electrical properties are characterized using X-ray diffraction (XRD), spectrophotometer, and Hall measurement system, respectively. The XRD analysis confirms the existence of In2S3and AgIn5S8phases. With the increase of the Ag concentration, the band gap of the films is decreased gradually from 2.82 eV to 2.69 eV and the resistivity drastically is decreased from ~103to5.478×10-2 Ω·cm.


2014 ◽  
Vol 56 (10) ◽  
pp. 1947-1951 ◽  
Author(s):  
V. V. Brus ◽  
M. N. Solovan ◽  
E. V. Maistruk ◽  
I. P. Kozyarskii ◽  
P. D. Maryanchuk ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Jyun-Min Lin ◽  
Ying-Chung Chen ◽  
Cheng-Fu Yang ◽  
Wei Chen

The antimony-telluride (Sb2Te3) thermoelectric thin films were prepared on SiO2/Si substrates by thermal evaporation method. The substrate temperature that ranged from room temperature to 150°C was adopted to deposit the Sb2Te3thin films. The effects of substrate temperature on the microstructures and thermoelectric properties of the Sb2Te3thin films were investigated. The crystal structure and surface morphology of the Sb2Te3thin films were characterized by X-ray diffraction analyses and field emission scanning electron microscope observation. The RT-deposited Sb2Te3thin films showed the amorphous phase. Te and Sb2Te3phases were coexisted in the Sb2Te3-based thin films as the substrate temperature was higher than room temperature. The average grain sizes of the Sb2Te3-based thin films were 39 nm, 45 nm, 62 nm, 84 nm, and 108 nm, as the substrate temperatures were 50°C, 75°C, 100°C, 125°C, and 150°C, respectively. The Seebeck coefficients, electrical conductivity, and power factor were measured at room temperature; we had found that they were critically dependent on the substrate temperature.


2012 ◽  
Vol 545 ◽  
pp. 393-398 ◽  
Author(s):  
Mohammed Khalil Mohammed Ali ◽  
K. Ibrahim ◽  
M.Z. Pakhuruddin ◽  
M.G. Faraj

This work describe the optical and electrical properties of indium tin oxide (ITO) thin films prepared by thermal evaporation method on flexible plastic substrate (polyethylene terephthalate (PET)). The optical transmission and absorption of ITO films in the visible and UV rang have been studied. The resistivity, sheet resistant, carrier concentration and mobility have been evaluated by Hall Effect measurement. The surface morphology and roughness were investigated by atomic force microscopy (AFM). The results indicate that the optical transmission greater than 85% over the visible rang and it was found to be strongly dependent on the thickness of ITO films. The Resistivity and sheet resistant with low values (10-4Ω-cm, 9.22 Ω/ respectively) were obtained and ties values were increased with ITO thin films thickness increasing .AFM investigation showed that the roughness surface of (8 – 30) RMS have been obtained over different thickness of ITO films. The obtained results of the deposited films by this method were analyzed. Details of sample preparation, experimental methods and results are given and discussed.


Sign in / Sign up

Export Citation Format

Share Document