X-ray powder diffraction and Raman spectroscopy studies of phase transitions in zinc(II) hexaaquonitrate below 300 K

1990 ◽  
Vol 25 (11) ◽  
pp. 1311-1320 ◽  
Author(s):  
B. Borzęcka-Prokop ◽  
E. Kapturkiewicz ◽  
A. Weselucha-Birczynska ◽  
S. A. Hodorowicz
2020 ◽  
Vol 62 (7) ◽  
pp. 1123
Author(s):  
Е.В. Богданов ◽  
Е.И. Погорельцев ◽  
А.В. Карташев ◽  
М.В. Горев ◽  
М.С. Молокеев ◽  
...  

Abstract The (NH_4)_3VOF_5 crystals have been synthesized and their homogeneity and single-phase structure has been established by the X-ray diffraction, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy studies. The investigations of the temperature dependences of specific heat, entropy, strain, and pressure susceptibility show the occurrence of three phase transitions caused by the structural transformations in the (NH_4)_3VOF_5 crystals. The T – p phase diagram shows the temperature limits of stability of the crystalline phases implemented in (NH_4)_3VOF_5. The optical and dielectric studies disclose the ferroelastic nature of the phase transitions. An analysis of the experimental data together with the data on the isostructural (NH_4)_3VO_2F_4 crystal makes it possible to distinguish the physical properties of oxyfluorides containing vanadium of different valences (IV and V).


2000 ◽  
Vol 33 (2) ◽  
pp. 279-284 ◽  
Author(s):  
J.-E. Jørgensen ◽  
J. Staun Olsen ◽  
L. Gerward

ReO3has been studied at pressures up to 52 GPa by X-ray powder diffraction. The previously observed cubicIm3¯ high-pressure phase was shown to transform to a monoclinic MnF3-related phase at about 3 GPa. All patterns recorded above 12 GPa could be indexed on rhombohedral cells. The compressibility was observed to decrease abruptly at 38 GPa. It is therefore proposed that the oxygen ions are hexagonally close packed above this pressure, giving rise to two rhombohedral phases labelled I and II. The zero-pressure bulk moduliBoof the observed phases were determined and the rhombohedral phase II was found to have an extremely large value of 617 (10) GPa. It was found that ReO3transforms back to thePm3¯mphase found at ambient pressure.


2006 ◽  
Vol 988 ◽  
Author(s):  
Joshu A. Kurzman ◽  
Margret J. Geselbracht

AbstractTwo new Dion-Jacobson type layered perovskite solid solutions, RbCa2-xSrxM3O10 (M = Nb, Ta; 0 ≤ x ≤ 2), were prepared and studied by X-ray powder diffraction, neutron powder diffraction, and Raman spectroscopy. X-ray powder diffraction confirmed single-phase solid solution formation with continuous expansion of the idealized primitive tetragonal unit cell with increasing strontium content. Neutron powder diffraction studies of selected samples revealed lower symmetries and larger unit cells, as necessitated by octahedral tilting within the perovskite slabs, compared to the idealized primitive cell. As the average size of the A-cation in the perovskite slab is varied from Sr2+ to Ca2+, more extensive octahedral tilting is introduced. Vibrational modes of the perovskite slab observed using Raman spectroscopy show subtle changes as a function of calcium/strontium content and more intriguing differences between the isostructural niobates and tantalates.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1124
Author(s):  
Galina Palyanova ◽  
Evgeny Sidorov ◽  
Andrey Borovikov ◽  
Yurii Seryotkin

The copper-containing agates of the Avacha Bay (Eastern Kamchatka, Russia) have been investigated in this study. Optical microscopy, scanning electron microscopy, electron microprobe analysis, X-ray powder diffraction, Raman spectroscopy, and fluid inclusions were used to investigate the samples. It was found that copper mineralization in agates is represented by native copper, copper sulphides (chalcocite, djurleite, digenite, anilite, yarrowite, rarely chalcopyrite) and cuprite. In addition to copper minerals, sphalerite and native silver were also found in the agates. Native copper is localized in a siliceous matrix in the form of inclusions usually less than 100 microns in size—rarely up to 1 mm—forming dendrites and crystals of a cubic system. Copper sulphides are found in the interstices of chalcedony often cementing the marginal parts of spherule aggregates of silica. In addition, they fill the micro veins, which occupy a cross-cutting position with respect to the concentric bands of chalcedony. The idiomorphic appearance of native copper crystals and clear boundaries with the silica matrix suggest their simultaneous crystallization. Copper sulphides, cuprite, and barite micro veins indicate a later deposition. Raman spectroscopy and X-ray powder diffraction results demonstrated that the Avacha Bay agates contained cristobalite in addition to quartz and moganite. The fluid inclusions study shows that the crystalline quartz in the center of the nodule in agates was formed with the participation of solutions containing a very low salt concentration (<0.3 wt.% NaCl equivalent) at the temperature range 110–50 °C and below. The main salt components were CaCl2 and NaCl, with a probable admixture of MgCl2. The copper mineralization in the agates of the Avacha Bay established in the volcanic strata can serve as a direct sign of their metallogenic specialization.


Sign in / Sign up

Export Citation Format

Share Document