scholarly journals Identification of seedling resistance to stem rust in advanced wheat lines and varieties from Pakistan

Crop Science ◽  
2020 ◽  
Vol 60 (2) ◽  
pp. 804-811
Author(s):  
Monsif Ur Rehman ◽  
Sam Gale ◽  
Gina Brown‐Guedira ◽  
Yue Jin ◽  
David Marshall ◽  
...  
2018 ◽  
Vol 101 (1) ◽  
pp. 115-120
Author(s):  
Mekonnen Assefa ◽  
Fitsum Sileshi ◽  
Netsanet Bacha ◽  
Kitessa Gutu

2014 ◽  
Vol 163 (5) ◽  
pp. 353-363 ◽  
Author(s):  
Netsanet Hei ◽  
Hussein Ali Shimelis ◽  
Mark Laing ◽  
Belayneh Admassu

Plant Disease ◽  
2020 ◽  
Vol 104 (7) ◽  
pp. 1939-1943
Author(s):  
Xian Xin Wu ◽  
Qiu Jun Lin ◽  
Xin Yu Ni ◽  
Qian Sun ◽  
Rong Zhen Chen ◽  
...  

Wheat stem rust, caused by Puccinia graminis f. sp. tritici, is one of the most serious fungal diseases in wheat production, seriously threatening the global supply of wheat and endangering food security. The present study was conducted to evaluate wheat monogenic lines with known Sr genes to the most prevalent P. graminis f. sp. tritici races in China. In addition, wheat lines introduced from the International Maize and Wheat improvement Center (CIMMYT) with resistance to the Ug99 race group were also evaluated with the prevalent Chinese P. graminis f. sp. tritici races. The monogenic lines containing Sr9e, Sr21, Sr26, Sr31, Sr33, Sr35, Sr37, Sr38, Sr47, and SrTt3 were effective against races 21C3CTTTM, 34C0MRGSM, and 34C3MTGQM at both seedling and adult-plant stages. In contrast, monogenic lines containing Sr6, Sr7b, Sr8a, Sr9a, Sr9b, Sr9d, Sr9f, Sr9g, Sr13, Sr16, Sr18, Sr19, Sr20, Sr24, Sr28, Sr29, and Sr34 were highly susceptible to these races at both seedling and adult-plant stages. Lines with Sr5, Sr10, Sr13, Sr14, Sr15, Sr17, Sr21, Sr22, Sr23, Sr25, Sr27, Sr29, Sr30, Sr32, Sr36, and Sr39 were resistant to one or more of the tested races. Among the 123 CIMMYT lines, 38 (30.9%) showed varying levels of susceptibility to Chinese P. graminis f. sp. tritici races. The results should be useful for breeding wheat cultivars with resistance to stem rust.


1995 ◽  
Vol 50 (1-2) ◽  
pp. 54-60 ◽  
Author(s):  
Claudia Bücker ◽  
Barbara Witte ◽  
Ursula Windmüller ◽  
Hans J. Grambow

Abstract Anthranilate synthase and chorismate mutase activities which control the flow of substrate from chorismate into the tryptophan pathway and into the phenylalanine/tyrosine pathway, respectively, were examined in three near isogenic wheat lines of Triticum aestivum L. (cv. Prelude Sr 5, highly resistant to stem rust infection; cv. Prelude Sr 24, moderately resistant; cv. Prelude srx, susceptible). The activities of both enzymes were found to increase in re­sponse to inoculation with the stem rust fungus Puccinia graminis f. sp. tritici or treatment with Pgt elicitor. Thus, both the tryptophan branch and the phenylalanine branch appear to contribute to the resistance response in wheat leaves. Only the cytosolic but not the plastidic fraction of the enzyme activities appears to be affected by fungal infection or elicitor treat­ment. Some differences with respect to degree and time dependency of enzyme activation were noticed between the three wheat lines following inoculation but not after treatment with the Pgt elicitor.


Crop Science ◽  
2010 ◽  
Vol 50 (5) ◽  
pp. 1823-1830 ◽  
Author(s):  
Eric L. Olson ◽  
Gina Brown-Guedira ◽  
David Marshall ◽  
Ellen Stack ◽  
Robert L. Bowden ◽  
...  

1929 ◽  
Vol 1 (2) ◽  
pp. 163-188 ◽  
Author(s):  
J. B. Harrington ◽  
W. K. Smith

A genetical study of resistance of wheat to black stem rust, and a plant breeding attack on the rust problem are described. A large F2 population of the cross Vernal (T. dicoccum) × Marquis (T. vulgare) was grown under severe natural epidemic conditions in the field and hundreds of F3 progenies were exposed in the seedling stage, under controlled conditions, to pure physiologic forms of rust. In the field Vernal is highly resistant and Marquis susceptible to most forms of stem rust. Resistance in the field proved incompletely dominant and appeared to be governed by a single genetic factor. Marquis and Vernal were found to differ by one main genetic factor, Rb, for seedling reaction to form 21. This factor Rb, carried by Vernal, also governs seedling resistance to forms 17, 29 and 36 and appears to be responsible for the slight seedling resistance of Vernal to form 27. There was some evidence that the factor Rb is the same factor that controls the resistance of the F2 plants to the forms of rust in the field (forms 17, 21, 29 and 36 were known to be present.) A different factor Ra causes the resistance of Marquis seedlings to form 27. Vernal resistance was not found to be associated closely with the seed shape of that variety nor with its adherence of glumes to the seed.


2010 ◽  
Vol 61 (12) ◽  
pp. 1036 ◽  
Author(s):  
J. Zhang ◽  
C. R. Wellings ◽  
R. A. McIntosh ◽  
R. F. Park

Seedling resistances to stem rust, leaf rust and stripe rust were evaluated in the 37th International Triticale Screening Nursery, distributed by the International Wheat and Maize Improvement Centre (CIMMYT) in 2005. In stem rust tests, 12 and 69 of a total of 81 entries were postulated to carry Sr27 and SrSatu, respectively. When compared with previous studies of CIMMYT triticale nurseries distributed from 1980 to 1986 and 1991 to 1993, the results suggest a lack of expansion in the diversity of stem rust resistance. A total of 62 of 64 entries were resistant to five leaf rust pathotypes. In stripe rust tests, ~93% of the lines were postulated to carry Yr9 alone or in combination with other genes. The absence of Lr26 in these entries indicated that Yr9 and Lr26 are not genetically associated in triticale. A high proportion of nursery entries (63%) were postulated to carry an uncharacterised gene, YrJackie. The 13 lines resistant to stripe rust and the 62 entries resistant to leaf rust represent potentially useful sources of seedling resistance in developing new triticale cultivars. Field rust tests are needed to verify if seedling susceptible entries also carry adult plant resistance.


Sign in / Sign up

Export Citation Format

Share Document