scholarly journals Evaluation of Advanced Bread Wheat Lines for Field and Seedling Resistance to Stem Rust (<i>Puccinia graminis</i> f. sp. <i>tritici</i>)

Author(s):  
Bekele Hundie
Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2359-2366 ◽  
Author(s):  
Bekele Hundie ◽  
Bedada Girma ◽  
Zerihun Tadesse ◽  
Erena Edae ◽  
Pablo Olivera ◽  
...  

In Ethiopia, breeding rust resistant wheat cultivars is a priority for wheat production. A stem rust epidemic during 2013 to 2014 on previously resistant cultivar Digalu highlighted the need to determine the effectiveness of wheat lines to multiple races of Puccinia graminis f. sp. tritici in Ethiopia. During 2014 and 2015, we evaluated a total of 97 bread wheat and 14 durum wheat genotypes against four P. graminis f. sp. tritici races at the seedling stage and in single-race field nurseries. Resistance genes were postulated using molecular marker assays. Bread wheat lines were resistant to race JRCQC, the race most virulent to durum wheat. Lines with stem rust resistance gene Sr24 possessed the most effective resistance to the four races. Only three lines with adult plant resistance possessed resistance effective to the four races comparable with cultivars with Sr24. Although responses of the wheat lines across races were positively correlated, wheat lines were identified that possessed adult plant resistance to race TTKSK but were relatively susceptible to race TKTTF. This study demonstrated the importance of testing wheat lines for response to multiple races of the stem rust pathogen to determine if lines possessed non-race-specific resistance. [Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


2014 ◽  
Vol 163 (5) ◽  
pp. 353-363 ◽  
Author(s):  
Netsanet Hei ◽  
Hussein Ali Shimelis ◽  
Mark Laing ◽  
Belayneh Admassu

Plant Disease ◽  
2020 ◽  
Vol 104 (7) ◽  
pp. 1939-1943
Author(s):  
Xian Xin Wu ◽  
Qiu Jun Lin ◽  
Xin Yu Ni ◽  
Qian Sun ◽  
Rong Zhen Chen ◽  
...  

Wheat stem rust, caused by Puccinia graminis f. sp. tritici, is one of the most serious fungal diseases in wheat production, seriously threatening the global supply of wheat and endangering food security. The present study was conducted to evaluate wheat monogenic lines with known Sr genes to the most prevalent P. graminis f. sp. tritici races in China. In addition, wheat lines introduced from the International Maize and Wheat improvement Center (CIMMYT) with resistance to the Ug99 race group were also evaluated with the prevalent Chinese P. graminis f. sp. tritici races. The monogenic lines containing Sr9e, Sr21, Sr26, Sr31, Sr33, Sr35, Sr37, Sr38, Sr47, and SrTt3 were effective against races 21C3CTTTM, 34C0MRGSM, and 34C3MTGQM at both seedling and adult-plant stages. In contrast, monogenic lines containing Sr6, Sr7b, Sr8a, Sr9a, Sr9b, Sr9d, Sr9f, Sr9g, Sr13, Sr16, Sr18, Sr19, Sr20, Sr24, Sr28, Sr29, and Sr34 were highly susceptible to these races at both seedling and adult-plant stages. Lines with Sr5, Sr10, Sr13, Sr14, Sr15, Sr17, Sr21, Sr22, Sr23, Sr25, Sr27, Sr29, Sr30, Sr32, Sr36, and Sr39 were resistant to one or more of the tested races. Among the 123 CIMMYT lines, 38 (30.9%) showed varying levels of susceptibility to Chinese P. graminis f. sp. tritici races. The results should be useful for breeding wheat cultivars with resistance to stem rust.


Crop Science ◽  
2020 ◽  
Vol 60 (2) ◽  
pp. 804-811
Author(s):  
Monsif Ur Rehman ◽  
Sam Gale ◽  
Gina Brown‐Guedira ◽  
Yue Jin ◽  
David Marshall ◽  
...  

Genome ◽  
1988 ◽  
Vol 30 (2) ◽  
pp. 269-276
Author(s):  
M. Padidam ◽  
D. R. Knott

Resistance to stem rust (Puccinia graminis Pers. f. sp. tritici Eriks, and Henn.), particularly adult plant resisitance to race 15B-1, was studied in seven wheat (Triticum aestivum L.) cultivars or lines: 'Bonza', 'Chris', 'FKN-II-50-17', 'MRFY', 'Thatcher', 'Marquillo', and 'Hope'. Each of the seven was crossed with a susceptible parent and either F4- or F5-derived lines developed by single seed descent. All of the lines were tested with race 15B-1 in field nurseries. Lines derived from parents carrying seedling resistance to race 15B-1 were also tested as seedlings in the greenhouse with race 15B-1, and in some cases races 56, 29, and C65. The data indicated that 'Bonza' carries Sr6, probably Sr5, an unidentified gene giving resistance to race 56, two unidentified genes for resistance to race C65, and two minor genes that combine to produce intermediate adult plant resistance. 'Chris' carries Sr5, Sr7a, Sr8a, and Sr12. In addition, it may have three minor genes for adult plant resistance. 'FKN-II-50-17' carries Sr6 and may have four minor genes that combine to produce moderate adult plant resistance. 'MRFY', which is seedling susceptible to race 15B-1, carries Sr9b, possibly Sr5, plus an unidentified gene for resistance to C65. In addition, it appears to have one major gene for adult plant resistance plus two or more minor genes. 'Thatcher', 'Marquillo', and 'Hope' had only limited resistance to race 15B-1 in the field and no genetic analysis of their crosses was possible. The four parents that had good resistance to race 15B-1 in the field, 'Bonza', 'Chris', 'FKN-II-50-17', and 'MRFY', all carry minor genes for adult plant resistance that had little effect individually but produced moderate resistance when combined. The genes Sr5 and Sr9b, which have no effect on resistance to 15B-1 is seedlings, were found to significantly increase resistance in adult plants in the field.Key words: stem rust, Puccinia graminis tritici, wheat, Triticum aestivum, adult plant rust resistance.


Plant Disease ◽  
2002 ◽  
Vol 86 (6) ◽  
pp. 568-572 ◽  
Author(s):  
D. V. McVey ◽  
D. L. Long ◽  
J. J. Roberts

Wheat stem rust caused negligible yield losses in 1997 and 1998. Overwintering sites were found in central and east-central Louisiana in 1997, and in northwestern Florida, northeastern Louisiana, and central Texas in 1998. Race Pgt-TPMK predominated in 1997 with 69% of 100 isolates with race RCRS next at 11%. In 1998, race RCRS predominated with 55% of 132 isolates, and TPMK occurred at 10%. Race QFCS occurred at 8% in 1997 and 31% in 1998. Races QCCS and QTHJ were found in 1997, and races QFBS, RKMQ, RKQQ, and RCMS were found in 1998. Race QCCJ, virulent to barley with the Rpg1 gene for stem rust resistance, was not found from wheat in 1997 or 1998. No virulence was found to wheat lines with Sr 13, 22, 24, 25, 26, 27, 29, 30, 31, 32, 37, Gt, or Wld-1. Oat stem rust was found earlier in 1997 than 1998, but was more widespread in 1998. Race NA27, virulent to Pg-1, -2, -3, -4, and -8, was the predominant race in the United States in 1997 (79% of 116 isolates) and again in 1998 (79% of 116 isolates). NA16, virulent to Pg-1, -3, and -8, was found in the south (1997 and 1998), and NA5, virulent to Pg-2 and -15, and NA10, virulent to Pg-2, -3, and -15, were found in the west (1997).


2021 ◽  
Vol 25 (7) ◽  
pp. 740-745
Author(s):  
E. S. Skolotneva ◽  
V. N. Kelbin ◽  
V. P. Shamanin ◽  
N. I. Boyko ◽  
V. A. Aparina ◽  
...  

Present-day wheat breeding for immunity exploits extensively closely related species from the family Triticeae as gene donors. The 2NS/2AS translocation has been introduced into the genome of the cultivated cereal Triticum aestivum from the wild relative T. ventricosum. It contains the Lr37, Yr17, and Sr38 genes, which support seedling resistance to the pathogens Puccinia triticina Eriks., P. striiformis West. f. sp. tritici, and P. graminis Pers. f. sp. tritici Eriks. & E. Henn, which cause brown, yellow, and stem rust of wheat, respectively. This translocation is present in the varieties Trident, Madsen, and Rendezvous grown worldwide and in the Russian varieties Morozko, Svarog, Graf, Marquis, and Homer bred in southern regions. However, the Sr38 gene has not yet been introduced into commercial varieties in West Siberia; thus, it remains of practical importance for breeding in areas where populations of P. graminis f. sp. tritici are represented by avirulent clones. The main goal of this work was to analyze the frequency of clones (a)virulent to the Sr38 gene in an extended West Siberian collection of stem rust agent isolates. In 2019–2020, 139 single pustule isolates of P. graminis f. sp. tritici were obtained on seedlings of the standard susceptible cultivar Khakasskaya in an environmentally controlled laboratory (Institute of Cytology and Genetics SB RAS) from samples of urediniospores collected on commercial and experimental bread wheat fields in the Novosibirsk, Omsk, Altai, and Krasnoyarsk regions. By inoculating test wheat genotypes carrying Sr38 (VPM1 and Trident), variations in the purity of (a)virulent clones were detected in geographical samples of P. graminis f. sp. tritici. In general, clones avirulent to Sr38 constitute 60 % of the West Siberian fungus population, whereas not a single virulent isolate was detected in the Krasnoyarsk collection. The Russian breeding material was screened for sources of the stem rust resistance gene by using molecular markers specific to the 2NS/2AS translocation. A collection of hybrid lines and varieties of bread spring wheat adapted to West Siberia (Omsk SAU) was analyzed to identify accessions promising for the region. The presence of the gene was postulated by genotyping with specific primers (VENTRIUP-LN2) and phytopathological tests with avirulent clones of the fungus. Dominant Sr38 alleles were identified in Lutescens 12-18, Lutescens 81-17, Lutescens 66-16, Erythrospermum 79/07, 9-31, and 8-26. On the grounds of the composition of the West Siberian P. graminis f. sp. tritici population, the Sr38 gene can be considered a candidate for pyramiding genotypes promising for the Novosibirsk, Altai, and Krasnoyarsk regions. 


Sign in / Sign up

Export Citation Format

Share Document