scholarly journals Response to “comments on the paper titled: Parameter extraction of single‐diode photovoltaic module using experimental current‐voltage data”

Author(s):  
S. Sreekantha ◽  
Chandrasekhar Yammani
2004 ◽  
Vol 27 (2) ◽  
pp. 61-67
Author(s):  
S. Dib ◽  
C. Salame ◽  
N. Toufik ◽  
A. Khoury ◽  
F. Pélanchon ◽  
...  

A new method for the extraction of junction parameters from a description of the current–voltage characteristic is developed. A simulation is performed and a high accuracy is obtained for the determination of the singleexponential model parameters. The method is easy to implement in a control process for device characterization. An application, achieved to observe the degradation of the emitter–base junction of a bipolar transistor during an aging experiment, shows that the evolutions of the single exponential model parameters versus time introduce a means for degradation quantification.


Author(s):  
Mansour Zegrar ◽  
M’hamed Houari Zerhouni ◽  
Mohamed Tarik Benmessaoud ◽  
Fatima Zohra Zerhouni

In recent years, solar photovoltaic energy is becoming very important in the generation of green electricity. Solar photovoltaic effect directly converts solar radiation into electricity. The output of the photovoltaic module MPV depends on several factors as solar irradiation and cell temperature. A curve tracer is a system used to acquire the PV current-voltage characteristics, in real time, in an efficient manner. The shape of the I-V curve gives useful information about the possible anomalies of a PV device. This paper describes an experimental system developed to measure the current–voltage curve of a MPV under real conditions. The measurement is performed in an automated way. This present paper presents the design, and the construction of I-V simple curve tracer for photovoltaic modules. This device is important for photovoltaic (PV) performance assessment for the measurement, extraction, elaboration and diagnose of entire current-voltage I-V curves for several photovoltaic modules. This system permits to sweep the entire I-V curve, in short time, with different climatic and loads conditions. An experimental test bench is described. This tracer is simple and the experimental results present good performance. Simulation and experimental tests have been carried out. Experimental results presented good performance.


2018 ◽  
Vol 3 (4) ◽  
pp. 190-200
Author(s):  
B. Benabdelkrim ◽  
A. Benatillah

The study of photovoltaic systems (PV) in an efficient manner requires a precise knowledge of the I-V characteristic curves of PV modules. An accurate current-voltage (I-V) model of PV modules is inherently implicit and non-linear and calls for iterative computations to obtain an analytical expression of current as a function of voltage. In this paper, numerical approaches are proposed to forecast the PV modules performance for engineering applications. The proposed approaches were implemented in a Matlab script and the results have been compared with the datasheet values provided by manufacturers in standard test conditions (STC). These approaches permit to extract the unknown parameters and also allow quantifying the effects of module temperature and irradiance on key cells parameters. In this work, a comparative study of the performance characteristics for different modules thin films and solid is analyzed by a single-diode equivalent circuit using four- and five-parameter models and two diode model.


2019 ◽  
Vol 9 ◽  
pp. 59-69
Author(s):  
Alok Dhaundiyal ◽  
Divine Atsu

This paper presents the modeling and simulation of the characteristics and electrical performance of photovoltaic (PV) solar modules. Genetic coding is applied to obtain the optimized values of parameters within the constraint limit using the software MATLAB. A single diode model is proposed, considering the series and shunt resistances, to study the impact of solar irradiance and temperature on the power-voltage (P-V) and current-voltage (I-V) characteristics and predict the output of solar PV modules. The validation of the model under the standard test conditions (STC) and different values of temperature and insolation is performed, as well as an evaluation using experimentally obtained data from outdoor operating PV modules. The obtained results are also subjected to comply with the manufacturer’s data to ensure that the proposed model does not violate the prescribed tolerance range. The range of variation in current and voltage lies in the domain of 8.21 – 8.5 A and 22 – 23 V, respectively; while the predicted solutions for current and voltage vary from 8.28 – 8.68 A and 23.79 – 24.44 V, respectively. The measured experimental power of the PV module estimated to be 148 – 152 W is predicted from the mathematical model and the obtained values of simulated solution are in the domain of 149 – 157 W. The proposed scheme was found to be very effective at determining the influence of input factors on the modules, which is difficult to determine through experimental means.


Sign in / Sign up

Export Citation Format

Share Document