scholarly journals A potent and selective small molecule inhibitor of myoferlin attenuates colorectal cancer progression

2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Yuan He ◽  
Weiqiong Kan ◽  
Yunqi Li ◽  
Yun Hao ◽  
Anling Huang ◽  
...  
EBioMedicine ◽  
2017 ◽  
Vol 25 ◽  
pp. 22-31 ◽  
Author(s):  
Seung Ho Shin ◽  
Do Young Lim ◽  
Kanamata Reddy ◽  
Margarita Malakhova ◽  
Fangfang Liu ◽  
...  

2019 ◽  
Vol 5 (9) ◽  
pp. eaax2277 ◽  
Author(s):  
Lei Wang ◽  
Lixiao Zhang ◽  
Li Li ◽  
Jingsheng Jiang ◽  
Zhen Zheng ◽  
...  

Disrupting the interactions between Hsp90 and Cdc37 is emerging as an alternative and specific way to regulate the Hsp90 chaperone cycle in a manner not involving adenosine triphosphatase inhibition. Here, we identified DDO-5936 as a small-molecule inhibitor of the Hsp90-Cdc37 protein-protein interaction (PPI) in colorectal cancer. DDO-5936 disrupted the Hsp90-Cdc37 PPI both in vitro and in vivo via binding to a previously unknown site on Hsp90 involving Glu47, one of the binding determinants for the Hsp90-Cdc37 PPI, leading to selective down-regulation of Hsp90 kinase clients in HCT116 cells. In addition, inhibition of Hsp90-Cdc37 complex formation by DDO-5936 resulted in a remarkable cyclin-dependent kinase 4 decrease and consequent inhibition of cell proliferation through Cdc37-dependent cell cycle arrest. Together, our results demonstrated DDO-5936 as an identified specific small-molecule inhibitor of the Hsp90-Cdc37 PPI that could be used to comprehensively investigate alternative approaches targeting Hsp90 chaperone cycles for cancer therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Andrey Poloznikov ◽  
Sergey Nikulin ◽  
Larisa Bolotina ◽  
Andrei Kachmazov ◽  
Maria Raigorodskaya ◽  
...  

Colorectal cancer (CRC) is one of the most common and lethal types of cancer. Although researchers have made significant efforts to study the mechanisms underlying CRC drug resistance, our knowledge of this disease is still limited, and novel therapies are in high demand. It is urgent to find new targeted therapy considering limited chemotherapy options. KRAS mutations are the most frequent molecular alterations in CRC. However, there are no approved K-Ras targeted therapies for these tumors yet. GSK-3β is demonstrated to be a critically important kinase for the survival and proliferation of K-Ras–dependent pancreatic cancer cells. In this study, we tested combinations of standard-of-care therapy and 9-ING-41, a small molecule inhibitor of GSK-3β, in CRC cell lines and patient-derived tumor organoid models of CRC. We demonstrate that 9-ING-41 inhibits the growth of CRC cells via a distinct from chemotherapy mechanism of action. Although molecular biomarkers of 9-ING-41 efficacy are yet to be identified, the addition of 9-ING-41 to the standard-of-care drugs 5-FU and oxaliplatin could significantly enhance growth inhibition in certain CRC cells. The results of the transcriptomic analysis support our findings of cell cycle arrest and DNA repair deficiency in 9-ING-41–treated CRC cells. Notably, we find substantial similarity in the changes of the transcriptomic profile after inhibition of GSK-3β and suppression of STK33, another critically important kinase for K-Ras–dependent cells, which could be an interesting point for future research. Overall, the results of this study provide a rationale for the further investigation of GSK-3 inhibitors in combination with standard-of-care treatment of CRC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Olga A. Mass ◽  
Joseph Tuccinardi ◽  
Luke Woodbury ◽  
Cody L. Wolf ◽  
Bri Grantham ◽  
...  

AbstractOncostatin M (OSM) is a pleiotropic, interleukin-6 family inflammatory cytokine that plays an important role in inflammatory diseases, including inflammatory bowel disease, rheumatoid arthritis, and cancer progression and metastasis. Recently, elevated OSM levels have been found in the serum of COVID-19 patients in intensive care units. Multiple anti-OSM therapeutics have been investigated, but to date no OSM small molecule inhibitors are clinically available. To pursue a high-throughput screening and structure-based drug discovery strategy to design a small molecule inhibitor of OSM, milligram quantities of highly pure, bioactive OSM are required. Here, we developed a reliable protocol to produce highly pure unlabeled and isotope enriched OSM from E. coli for biochemical and NMR studies. High yields (ca. 10 mg/L culture) were obtained in rich and minimal defined media cultures. Purified OSM was characterized by mass spectrometry and circular dichroism. The bioactivity was confirmed by induction of OSM/OSM receptor signaling through STAT3 phosphorylation in human breast cancer cells. Optimized buffer conditions yielded 1H, 15N HSQC NMR spectra with intense, well-dispersed peaks. Titration of 15N OSM with a small molecule inhibitor showed chemical shift perturbations for several key residues with a binding affinity of 12.2 ± 3.9 μM. These results demonstrate the value of bioactive recombinant human OSM for NMR-based small molecule screening.


2020 ◽  
Vol 13 (4) ◽  
pp. 100754 ◽  
Author(s):  
Sumit Agarwal ◽  
Michael Behring ◽  
Hyung-Gyoon Kim ◽  
Prachi Bajpai ◽  
Balabhadrapatruni V.S.K. Chakravarthi ◽  
...  

2021 ◽  
Vol 10 (6) ◽  
pp. 245-250
Author(s):  
Maricruz Anaya-Ruiz ◽  
Martin Perez-Santos

Inhibition of the PD-1/PD-L1 pathway is a target for the development of new therapies. US10710986 patent describes a small molecule that targets PDL-1/PD-1 interactions and triggers antitumor activity against colorectal cancer. However, it does not describe biological assays that allow us to suppose that this small molecule may be active in other types of cancer. So far, there are no reports of clinical trials to evaluate the safety, toxicity and efficacy, but it will be of great interest to analyze in the future if this compound surpasses the action of therapy in cancer.


Sign in / Sign up

Export Citation Format

Share Document