Spectra of electron pair under harmonic and Debye potential

2017 ◽  
Vol 57 (2) ◽  
pp. 76-86 ◽  
Author(s):  
D. Munjal ◽  
V. Prasad
1991 ◽  
Vol 56 (10) ◽  
pp. 2160-2168 ◽  
Author(s):  
Josef Jirman

The 1H and 13C NMR spectra have been measured of six trans-azobenzenes substituted at 2 and 2’ positions with substituents favourable for complex formation with a metal (OH, NH2, NHCOCH3, COOH). From the standpoint of NMR such substituted trans-azobenzenes are present in solution in a rapid equilibrium following from rotation around the bond between C-1 of phenyl group and N atom of azo linkage. The predominant form has the substituent in the syn-position with respect to the free electron pair of the nearer azo nitrogen atom. The equilibrium is affected by dipolar aprotic solvents (such as hexadeuteriodimethyl sulfoxide) by decreasing the presence of the predominant form by 1 to 11%.


1979 ◽  
Vol 57 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Gerald W. Buchanan ◽  
Frederick G. Morin

13C chemical shifts and 13C–31P couplings are reported for 11 cyclic phosphoramidates of ring sizes from four to nine. Vicinal couplings are compared with those of carbocyclic analogs and provide insight regarding the degree of nitrogen lone pair derealization into the N—P bond. For six-membered and larger rings, there appears to be nearly complete lone pair delocalization, i.e., a trigonal planar nitrogen atom. In azetidine derivatives the nitrogen lone pair remains localized, giving rise to a highly puckered ring conformation. Pyrrolidine derivatives are viewed as having a nitrogen with a partially delocalized electron pair.


1959 ◽  
Vol 115 (3) ◽  
pp. 672-677 ◽  
Author(s):  
K. S. Suh ◽  
H. A. Bethe

Holzforschung ◽  
2019 ◽  
Vol 73 (2) ◽  
pp. 181-187 ◽  
Author(s):  
Olga Brovko ◽  
Irina Palamarchuk ◽  
Konstantin Bogolitsyn ◽  
Nikolay Bogdanovich ◽  
Artem Ivakhnov ◽  
...  

AbstractA new approach to the formation of “fullerene-like” carbon-nitrogen carbogels based on the interpolyelectrolyte complex lignosulfonate-chitosan (IPEC LSNa-CT) was developed. It was established that carbogel maintained the morphology of the precursor complex, i.e. the spherical geometry and the particle size of its main fractions (40–55 nm) were stored in the carbonizate. The influence of pyrolysis (Py) temperature was studied in the range of 500–1000°C on the structure of carbonizate. Carbogels obtained under different processing conditions have a well-developed microporous structure. The specific surface area of carbogels reduced with increasing Py temperature according to their nitrogen content. The maximum specific surface area (438.3 m2g−1) corresponds to the carbogel obtained at 600°C, while the maximum nitrogen content of this sample is 4.4%. The internal porosity of the material and the volume of supermicropores are reduced with increasing Py temperature due to the accumulation of double and triple carbon bonds in the carbogel. Apparently, the structure-forming N-atoms participate in the formation of condensed nitrogen-containing and cyclic structures as a donor of the electron pair and as such they accelerate the carbonization process.


Inorganics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 28
Author(s):  
Kriti Pathak ◽  
Chandan Nandi ◽  
Jean-François Halet ◽  
Sundargopal Ghosh

Synthesis, isolation, and structural characterization of unique metal rich diamagnetic cobaltaborane clusters are reported. They were obtained from reactions of monoborane as well as modified borohydride reagents with cobalt sources. For example, the reaction of [Cp*CoCl]2 with [LiBH4·THF] and subsequent photolysis with excess [BH3·THF] (THF = tetrahydrofuran) at room temperature afforded the 11-vertex tricobaltaborane nido-[(Cp*Co)3B8H10] (1, Cp* = η5-C5Me5). The reaction of Li[BH2S3] with the dicobaltaoctaborane(12) [(Cp*Co)2B6H10] yielded the 10-vertex nido-2,4-[(Cp*Co)2B8H12] cluster (2), extending the library of dicobaltadecaborane(14) analogues. Although cluster 1 adopts a classical 11-vertex-nido-geometry with one cobalt center and four boron atoms forming the open pentagonal face, it disobeys the Polyhedral Skeletal Electron Pair Theory (PSEPT). Compound 2 adopts a perfectly symmetrical 10-vertex-nido framework with a plane of symmetry bisecting the basal boron plane resulting in two {CoB3} units bridged at the base by two boron atoms and possesses the expected electron count. Both compounds were characterized in solution by multinuclear NMR and IR spectroscopies and by mass spectrometry. Single-crystal X-ray diffraction analyses confirmed the structures of the compounds. Additionally, density functional theory (DFT) calculations were performed in order to study and interpret the nature of bonding and electronic structures of these complexes.


Sign in / Sign up

Export Citation Format

Share Document