recoil momentum
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 3)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 13 (3) ◽  
pp. 349-354
Author(s):  
Anatoly I. Nikitin ◽  
◽  
Vadim A. Nikitin ◽  
Alexander M. Velichko ◽  
Tamara F. Nikitina ◽  
...  

When conducting experiments on the electric explosion of titanium foil in water, a “strange” radiation was detected, leaving dotted traces on the film. The velocity of the carriers of this radiation was estimated as 20–40 m/s, and their energy, estimated by the Coulomb drag mechanism, turned out to be equal to 700 MeV. Subsequently, it was found that similar traces are formed at various types of high-current arc discharges, both of artificial and natural origin. Many solutions have been proposed to explain the nature of “strange” radiation, but none of them describes the details of the process of formation of dotted traces. We believe that these traces on the film could appear due to the action of charged micron-sized clusters. The possibility of the existence of clusters in the form of a nucleus from a certain number of similarly charged ions enclosed in a spherical shell of water molecules is shown. The force of the Coulomb repulsion of ions is compensated by the compression force of the shell polarized by the inhomogeneous electric field created by the nuclear charge. As the cluster approaches the surface of the film, a cluster with a small charge separates from it. It is accelerated in the electric field of a “large” cluster to energy of about 1 GeV. Having received a recoil momentum, a large cluster moves away from the film, braking in an inhomogeneous electric field, and then “falls” onto it again, and the process is repeated.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 300
Author(s):  
Jacopo Terragni ◽  
Antonio Miotello

The complexity of the phenomena simultaneously occurring, from the very first instants of high-power laser pulse interaction with the target up to the phase explosion, along with the strong changes in chemical-physical properties of matter, makes modeling laser ablation a hard task, especially near the thermodynamic critical regime. In this work, we report a computational model of an aluminum target irradiated in vacuum by a gaussian-shaped pulse of 20 ns duration, with a peak intensity of the order of GW/cm2. This continuum model covers laser energy deposition and temperature evolution in the irradiated target, along with the mass removal mechanism involved, and the vaporized material expansion. Aluminum was considered to be a case study due to the vast literature on the temperature dependence of its thermodynamic, optical, and transport properties that were used to estimate time-dependent values of surface-vapor quantities (vapor pressure, vapor density, vapor and surface temperature) and vapor gas-dynamical quantities (density, velocity, pressure) as it expands into vacuum. Very favorable agreement is reported with experimental data regarding: mass removal and crater depth due to vaporization, generated recoil momentum, and vapor flow velocity expansion.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 396
Author(s):  
Ming Qiu ◽  
Peng Si ◽  
Jie Song ◽  
Zhenqiang Liao

Excessive recoil severely restricts the loading of high-power traditional guns on modern vehicles. To reduce the recoil without breaking the continuous firing mode and reducing the projectile velocity, a recoil reduction method that controls the lateral ejecting of propellant gas by a piston was proposed. The recoil reduction device is symmetric about the barrel axis. First, a one-dimensional two-phase flow model of interior ballistic during the gun firing cycle was established. Next, the MacCormack scheme was used to simulate, and the piston motion was gained. Then the propagation of the rarefaction wave in the barrel was presented. Finally, the propulsion difference between the piston-controlled gun and the traditional gun was discussed. The results showed that the recoil momentum was reduced by 31.80%, and the muzzle velocity was decreased by just 1.30% under the reasonable matching of structural parameters.


2017 ◽  
Vol 14 (4) ◽  
pp. 87
Author(s):  
S. G. Seletkov
Keyword(s):  

В статье автор анализирует группы эксплуатационных ограничений и условий, имеющих место при проектировании систем ствольного оружия.


Author(s):  
В.И. Захаров ◽  
◽  
Е.Ю. Локтионов ◽  
Ю.С. Протасов ◽  
Ю.Ю. Протасов ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document