Kinetic analysis of cytotoxic lymphocyte—target cell interaction as quantified by dual parameter flow cytometry

Cytometry ◽  
1993 ◽  
Vol 14 (4) ◽  
pp. 393-400 ◽  
Author(s):  
Jacek Waniewski ◽  
A. Karolina Palucka ◽  
Anna Porwit
2021 ◽  
Vol 12 ◽  
Author(s):  
Giorgio Santoni ◽  
Consuelo Amantini ◽  
Matteo Santoni ◽  
Federica Maggi ◽  
Maria Beatrice Morelli ◽  
...  

Natural killer (NK) cells are a main subset of innate lymphocytes that contribute to host immune protection against viruses and tumors by mediating target cell killing and secreting a wide array of cytokines. Their functions are finely regulated by a balance between activating and inhibitory receptors and involve also adhesive interactions. Mechanotransduction is the process in which physical forces sensed by mechanosensors are translated into chemical signaling. Herein, we report findings on the involvement of this mechanism that is mainly mediated by actin cytoskeleton, in the regulation of NK cell adhesion, migration, tissue infiltration and functions. Actin represents the structural basis for NK cell immunological synapse (NKIS) and polarization of secretory apparatus. NK-target cell interaction involves the formation of both uropods and membrane nanotubes that allow target cell interaction over long distances. Actin retrograde flow (ARF) regulates NK cell signaling and controls the equilibrium between activation versus inhibition. Activating NKIS is associated with rapid lamellipodial ARF, whereas lower centripetal actin flow is present during inhibitory NKIS where β actin can associate with the tyrosine phosphatase SHP-1. Overall, a better knowledge of mechanotransduction might represent a future challenge: Realization of nanomaterials tailored for NK cells, would be important to translate in vitro studies in in vivo new immunotherapeutic approaches.


Vox Sanguinis ◽  
1993 ◽  
Vol 65 (1) ◽  
pp. 25-31
Author(s):  
Sadayoshi Sekiguchi ◽  
Tetsuji Kobata ◽  
Hisami Ikeda ◽  
Yoshiko Ohnishi ◽  
Noriko Urushibara ◽  
...  

1979 ◽  
Vol 9 (7) ◽  
pp. 526-536 ◽  
Author(s):  
Kirsten Fischer Lindahl ◽  
Hilmar Lemke
Keyword(s):  

Cytometry ◽  
1986 ◽  
Vol 7 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Walter J. Storkus ◽  
Andrew E. Balber ◽  
Jeffrey R. Dawson

1978 ◽  
Vol 305 (1 Serotonin Neu) ◽  
pp. 262-288 ◽  
Author(s):  
K. Mølash;llgård ◽  
J. J. Lundberg ◽  
L. Wiklund ◽  
L. Lachenmayer ◽  
H. G. Baumgarten

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1802-1802 ◽  
Author(s):  
Wenche Jy ◽  
Joaquin J. Jimenez ◽  
Lucia M. Mauro ◽  
Carlos Bidot ◽  
Lawrence L. Horstman ◽  
...  

Abstract INTRODUCTION: We have previously shown that EMP comprise multiple species of vesicles released from endothelial cells (EC) upon stimulation. However, the mechanism underlying EMP release is not clear, nor is their functional role. We postulated that EMP release is initiated by formation of discrete clusters of membrane proteins, each of which may release distinctive EMP characterized by the predominant protein in the cluster or raft. Therefore, each such subspecies may have distinctive activities in cell interaction or other function. In this study, we employed flow cytometry to investigate this postulated mechanism, and compared in vitro with in vivo findings. METHODS: EMP were prepared by incubating renal endothelial cells (EC) with 10 ng/mL of TNF for 24hr. Two-color flow cytometry was used to analyze the phenotypic composition of the resulting EMP, the markers used including CD31, CD62E, CD51, CD54, annexinV (AnV), tissue factor (TF), and lectin Ulex europaeus I (Ulex). Fluorescence microscopy was used to study membrane protein movement and clustering. RESULTS:(1) Phenotypic composition of EMP was evaluated in culture supernatants by flow cytometry, first by the number detected with each marker. Expressed in millions/mL, they were: by Ulex, 280; AnV, 52; CD54, 48; CD62E, 46; CD31, 34; TF, 36; and CD51, 8.(2) Two-color technique was used to establish the degree to which more than 1 marker (antigen) was present on the same EMP. It was found that only a small fraction (<5%) of CD54+ or CD62E+ EMP were also positive for CD31, and vice versa.(3) Cell interactions: Incubating the EMP mixture with neutrophils resulted in selective binding of CD54+ and CD62E+ EMP to the neutrophils and loss of 95% and 70% of free CD54+ and CD62E+ EMP, respectively, from the cell-free supernatants. EMP positive for the other markers showed little binding to leukocytes. These data confirm subspecies of EMP with little overlap of markers and differing affinity for leukocytes. (4) Fluorescence microscopy: Upon EC stimulation, a time-dependent movement of surface markers CD31 and CD54 resulted in their clustering to different locations prior to shedding of vesicles. Majority of vesicles were seen to shed from these clusters. This process may explain how EC can release multiple subspecies of EMP. (5a) In vivo: Levels of CD54+ EMP were always low or nearly undetectable in plasma from patients or normal controls. However, high levels of CD54+ EMP/leukocyte conjugates were found in several thrombotic and inflammatory disorders. This is consistent with in vitro findings. (5b) In vivo total MP: Study of plasma from 26 normal controls showed that MP measured by Ulex were about 3 to 4-fold higher than if measured by AnV. The majority of Ulex+ MP were negative for AnV. SUMMARY:Our data support the hypothesis that upon activation or apoptosis, EC developed multiple membrane protein clusters as a prelude to EMP release.EMP species released from these membrane clusters exhibit distinctive phenotypes and activities such as leukocyte binding.AnV has been widely used a marker for total MP, but this will miss MP not expressing AnV. We show that the lectin marker Ulex gives the highest counts of MP, in vitro and in vivo, suggesting that Ulex may be a better proxy than AnV for defining total MP.


2015 ◽  
Vol 291 (4) ◽  
pp. 1652-1663 ◽  
Author(s):  
Anurag Purushothaman ◽  
Shyam Kumar Bandari ◽  
Jian Liu ◽  
James A. Mobley ◽  
Elizabeth E. Brown ◽  
...  

Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression.


1994 ◽  
Vol 14 (2) ◽  
pp. 253-276 ◽  
Author(s):  
Venita Jay ◽  
Diane Parkinson ◽  
Laurence Becker ◽  
Fu-Wah Chan

Sign in / Sign up

Export Citation Format

Share Document