Energy Efficient and Reliable K Best Detection Approach with Hybrid Decomposition for WiMAX Applications

Author(s):  
Bavithra K.B. ◽  
Siva Kumar R
Author(s):  
Bharath Ramesh ◽  
Andrés Ussa ◽  
Luca Della Vedova ◽  
Hong Yang ◽  
Garrick Orchard

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bandar Almaslukh

Early detection of pneumonia disease can increase the survival rate of lung patients. Chest X-ray (CXR) images are the primarily means of detecting and diagnosing pneumonia. Detecting pneumonia from CXR images by a trained radiologist is a challenging task. It needs an automatic computer-aided diagnostic system to improve the accuracy of diagnosis. Developing a lightweight automatic pneumonia detection approach for energy-efficient medical systems plays an important role in improving the quality of healthcare with reduced costs and speedier response. Recent works have proposed to develop automated detection models using deep learning (DL) methods. However, the efficiency and effectiveness of these models need to be improved because they depend on the values of the models’ hyperparameters. Choosing suitable hyperparameter values is a critical task for constructing a lightweight and accurate model. In this paper, a lightweight DL approach is proposed using a pretrained DenseNet-121-based feature extraction method and a deep neural network- (DNN-) based method with a random search fine-tuning technique. The DenseNet-121 model is selected due to its ability to provide the best representation of lung features. The use of random search makes the tuning process faster and improves the efficiency and accuracy of the DNN model. An extensive set of experiments are conducted on a public dataset of CXR images using a set of evaluation metrics. The experiments show that the approach achieved 98.90% accuracy with an increase of 0.47% compared to the latest approach on the same dataset. Moreover, the experimental results demonstrate the approach that the average execution time for detection is very low, confirming its suitability for energy-efficient medical systems.


2011 ◽  
Author(s):  
B. Smitha Shekar ◽  
M. Sudhakar Pillai ◽  
G. Narendra Kumar

2020 ◽  
Vol 39 (6) ◽  
pp. 8139-8147
Author(s):  
Ranganathan Arun ◽  
Rangaswamy Balamurugan

In Wireless Sensor Networks (WSN) the energy of Sensor nodes is not certainly sufficient. In order to optimize the endurance of WSN, it is essential to minimize the utilization of energy. Head of group or Cluster Head (CH) is an eminent method to develop the endurance of WSN that aggregates the WSN with higher energy. CH for intra-cluster and inter-cluster communication becomes dependent. For complete, in WSN, the Energy level of CH extends its life of cluster. While evolving cluster algorithms, the complicated job is to identify the energy utilization amount of heterogeneous WSNs. Based on Chaotic Firefly Algorithm CH (CFACH) selection, the formulated work is named “Novel Distributed Entropy Energy-Efficient Clustering Algorithm”, in short, DEEEC for HWSNs. The formulated DEEEC Algorithm, which is a CH, has two main stages. In the first stage, the identification of temporary CHs along with its entropy value is found using the correlative measure of residual and original energy. Along with this, in the clustering algorithm, the rotating epoch and its entropy value must be predicted automatically by its sensor nodes. In the second stage, if any member in the cluster having larger residual energy, shall modify the temporary CHs in the direction of the deciding set. The target of the nodes with large energy has the probability to be CHs which is determined by the above two stages meant for CH selection. The MATLAB is required to simulate the DEEEC Algorithm. The simulated results of the formulated DEEEC Algorithm produce good results with respect to the energy and increased lifetime when it is correlated with the current traditional clustering protocols being used in the Heterogeneous WSNs.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Author(s):  
Weihai Sun ◽  
Lemei Han

Machine fault detection has great practical significance. Compared with the detection method that requires external sensors, the detection of machine fault by sound signal does not need to destroy its structure. The current popular audio-based fault detection often needs a lot of learning data and complex learning process, and needs the support of known fault database. The fault detection method based on audio proposed in this paper only needs to ensure that the machine works normally in the first second. Through the correlation coefficient calculation, energy analysis, EMD and other methods to carry out time-frequency analysis of the subsequent collected sound signals, we can detect whether the machine has fault.


Sign in / Sign up

Export Citation Format

Share Document