Development of a tool for the structural design of the vertical load-bearing capacity of unreinforced masonry

Mauerwerk ◽  
2017 ◽  
Vol 21 (4) ◽  
pp. 223-234 ◽  
Author(s):  
Raphael Suda ◽  
Christian Schranz ◽  
Andreas Jäger
2021 ◽  
Author(s):  
Guangli Du ◽  
Thomas Cornelius ◽  
Joergen Nielsen ◽  
Lars Zenke Hansen

<p>Structural modelling of a masonry wall is challenging due to material properties, eccentricity of the vertical load, slenderness ratio etc. In recent theoretical developments for design of masonry walls, a new “Phi” method to determine the eccentricity is adopted in Eurocode 6. However, the comparisons between this method and the conventional “Ritter” method shows that for certain prerequisites it would result in substantial different load-bearing capacity. Hence, in order to investigate how support conditions influence the load bearing capacity of the wall, this study performs a nonlinear numerical analysis of a wall for several load cases in ABAQUS and the result is verified with an independently developed calculation tool using MATLAB. The results show that the top rotation plays a significant role for the load bearing capacity of the masonry wall supported by slabs at both ends. It is difficult to estimate the eccentricities without a rigorous calculation.</p>


1997 ◽  
Vol 3 (6) ◽  
pp. 619-632
Author(s):  
M. Schmid

Abstract Structural design and the position of the sustaining wall Entschigtal were at the origin of corrosion of the back layer of reinforcement. A drecrease of the load bearing section was observed in 1995. The assessment of the actual state of the reinforcement turned out to be a complex task in the context of the inspection of the structure. It was the combination of different test methods which finally led to reliable results concerning the extent and the position of corrosion of reinforcement. In order to restore the load bearing capacity for the remaining required service- life consolidation measures werde necessary. Permanent strand anchors have been placed to strengthen the wall.


2013 ◽  
Vol 438-439 ◽  
pp. 1892-1894
Author(s):  
Jiao Wei Feng ◽  
Jun Yan Lu ◽  
Jin Dong Ma

The grid structure often overall failed dut to local damage under the disaster load. In order to avoid the situation, the load cases of the plate truss structure under vertical load are analyzed in this paper. Taking the measure of strengthening the important bars, the ultimate bearing capacity of the structure is improved significantly. The improved load bearing capacity plays a positive role in resisting exceeding loads. Anti-disaster ability of the structure is improved.


2010 ◽  
Vol 33 (1) ◽  
pp. 18-28
Author(s):  
Ladslaus Lwambuka

In building construction industry service installations, usually housed in conduit pipes, are commonly mounted inside reinforced concrete structural elements. This practice is adopted to attain aesthetical outlook at both interior and exterior surfaces of the buildings. Depending on the extent of service installations, the cross sectional area of the load bearing structural member is substantially reduced. However, the current structural design guidelines have no provision to accommodate the extent to which the existence of conduit pipes impairs the load bearing capacity of the structural element though reduced cross sectional area. This study has attempted to address this gap in structural design ofbuildings; it involves assessing the current design practice of considering a structural element as a full solid body and comparing its ultimate load bearing capacity with the ones containing the conduit pipes. The study findings are based on test results from laboratory experiments on reinforced concrete slab models with varying intensity of conduit pipeinstallations as commonly practiced on construction sites. Recommendations are put forth when and how to consider the reduced load bearing capacity through the existence of service installations as part of structural engineering designs.


Author(s):  
Jan Krejsa ◽  
Miroslav Sýkora

Abstract This paper is focused on the reliability analysis of an existing reinforced concrete bridge from 1908. The load bearing capacity is assessed in accordance with valid standards using updated partial factors and the partial factors for structural design. Load bearing capacities obtained by these methods are critically compared. The application of the updated partial factors leads to 15% higher load bearing capacity than the ordinary partial factor method used for structural design.


2021 ◽  
Author(s):  
Paul Dreifke ◽  
Tim Göckel ◽  
Andreas Laubach ◽  
Jürgen Schaffitzel‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌

<p>Timber-concrete-composite structures for road bridges could be much more often used in the field of medium-span road bridges due to their good ecological and structural performance. Therefore, an appropriate consideration of the punctual connections usually used for such bridges is necessary. Those connectors have a large load-bearing capacity and stiffness. While there are established methods for determining the stiffness and load-bearing capacity in the main longitudinal load- bearing direction, the secondary load-bearing behaviour in transverse and vertical direction is usually not determined for those bridges. By assessing test results and evaluation of FE simulations, this article presents an approach of how a calculation method can be derived that makes the structural design of timber-concrete-composite bridges safely even in more demanding application scenarios.</p>


2013 ◽  
Vol 470 ◽  
pp. 1101-1104
Author(s):  
Yue Hui Li ◽  
Xiao Juan Gao ◽  
Guo Hua Zhong

Model tests of the squeezed and branch pile with or without vertical load are carried out and the horizontal load bearing capacity are studied in this paper. Based on the model test results, the influence of vertical load to squeezed and branch pile horizontal load bearing capacity and the influence of horizontal load to squeezed and branch pile vertical bearing capacity are analyzed with FEM. The analysis results show that the vertical load may increase the lateral bearing capacity of pile, and the horizontal load may decrease the vertical settlement, but horizontal load may increase the horizontal displacement and moment of the pile body and lead to instability and cracking failure. This should be pay more attention in the practical engineering.


2020 ◽  
Vol 62 (1) ◽  
pp. 55-60
Author(s):  
Per Heyser ◽  
Vadim Sartisson ◽  
Gerson Meschut ◽  
Marcel Droß ◽  
Klaus Dröder

Sign in / Sign up

Export Citation Format

Share Document