scholarly journals Fully automated dried blood spot sample handling and extraction for serological testing of SARS‐CoV‐2 antibodies

2020 ◽  
Author(s):  
Stefan Gaugler ◽  
Pierre‐Edouard Sottas ◽  
Katharina Blum ◽  
Marc Luginbühl
Author(s):  
Thomas W. McDade ◽  
Elizabeth M. McNally ◽  
Aaron S. Zelikovich ◽  
Richard D’Aquila ◽  
Brian Mustanski ◽  
...  

AbstractObjectiveSerological testing is needed to investigate the extent of transmission of SARS-CoV-2 from front-line essential workers to their household members. However, the requirement for serum/plasma limits serological testing to clinical settings where it is feasible to collect and process venous blood. To address this problem we developed a serological test for SARS-CoV-2 IgG antibodies that requires only a single drop of finger stick capillary whole blood, collected in the home and dried on filter paper (dried blood spot, DBS).MethodsAn ELISA to the receptor binding domain of the SARS-CoV-2 spike protein was optimized to quantify IgG antibodies in DBS. Samples were self-collected from a community sample of 232 participants enriched with health care workers, including 30 known COVID-19 cases and their household members.ResultsAmong 30 individuals sharing a household with a virus-confirmed case of COVID-19, 80% were seropositive. Of 202 community individuals without prior confirmed acute COVID-19 diagnoses, 36% were seropositive. Of documented convalescent COVID-19 cases from the community, 29 of 30 (97%) were seropositive for IgG antibodies to the receptor binding domain.ConclusionDBS ELISA provides a minimally-invasive alternative to venous blood collection. Early analysis suggests a high rate of transmission among household members. High rates of seroconversion were also noted following recovery from infection. Serological testing for SARSCoV-2 IgG antibodies in DBS samples can facilitate seroprevalence assessment in community settings to address epidemiological questions, monitor duration of antibody responses, and assess if antibodies against the spike protein correlate with protection from reinfection.


Author(s):  
Gabriella L. Morley ◽  
Stephen Taylor ◽  
Sian Jossi ◽  
Marisol Perez-Toledo ◽  
Sian E. Faustini ◽  
...  

AbstractImportancePopulation-wide serological testing is an essential component in understanding the COVID-19 pandemic. The logistical challenges of undertaking widespread serological testing could be eased through use of a reliable dried blood spot (DBS) sampling method.ObjectiveTo validate the use of dried blood spot sampling for the detection of SARS-CoV-2-specific antibodies.Design, setting and participantsEighty-seven matched DBS and serum samples were obtained from eighty individuals, including thirty-one who were previously PCR-positive for SARS-CoV-2. DBS eluates and sera were used in an ELISA to detect antibodies to the viral spike protein.ResultsSpecific anti-SARS-Cov-2 spike glycoprotein antibodies were detectable in both serum and DBS eluate and there was a significant correlation between the antibody levels detected in matched samples (r = 0.96, p<0.0001). Using serum as the gold standard in the assay, matched DBS samples achieved a Cohen’s kappa coefficient of 0.975 (near-perfect agreement), a sensitivity of 98.1% and specificity of 100%, for detecting anti-spike glycoprotein antibodies.Conclusions and relevanceEluates from DBS samples are a reliable and reproducible source of antibodies to be used for the detection of SARS-CoV-2-specific antibodies. The use of DBS sampling could complement the use of venepuncture in the immunosurveillance of COVID-19 in both low and high income settings.


2012 ◽  
Vol 26 (12) ◽  
pp. 1617-1624 ◽  
Author(s):  
Jean-Nicholas Mess ◽  
Marie-Pierre Taillon ◽  
Cynthia Côté ◽  
Fabio Garofolo

2021 ◽  
Author(s):  
Peyton K Miesse ◽  
Bradley B Collier ◽  
Russell P Grant

The utilization of vaccines to fight the spread of SARS-CoV-2 has led to a growing need for expansive serological testing. To address this, an EUA approved immunoassay for detection of antibodies to SARS-CoV-2 in venous serum samples was investigated for use with dried blood spot (DBS) samples. Results from self-collected DBS samples demonstrated a 98.1% categorical agreement to venous serum with a correlation (R) of 0.9600 while professionally collected DBS samples demonstrated a categorical agreement of 100.0% with a correlation of 0.9888 to venous serum. Additional studies were performed to stress different aspects of at-home DBS collection, including shipping stability, effects of interferences, and other sample-specific robustness studies. These studies demonstrated a categorical agreement of at least 95.0% and a mean bias less than ±20.0%. Furthermore, the ability to track antibody levels following vaccination with the BioNTech/Pfizer vaccine was demonstrated with serial self-collected DBS samples from pre-dose (Day 0) out to 19 weeks.


2008 ◽  
Vol 336 (1) ◽  
pp. 78-84 ◽  
Author(s):  
Kristin Skogstrand ◽  
Charlotte K. Ekelund ◽  
Poul Thorsen ◽  
Ida Vogel ◽  
Bo Jacobsson ◽  
...  

Author(s):  
Thomas W. McDade ◽  
Elizabeth M. McNally ◽  
Richard D’Aquila ◽  
Brian Mustanski ◽  
Aaron Miller ◽  
...  

AbstractBackgroundSerological testing for SARS-CoV-2 IgG antibodies is needed to document the community prevalence and distribution of the virus, particularly since many individuals have mild symptoms and cannot access molecular diagnostic testing of naso-pharyngeal swabs. However, the requirement for serum/plasma limits serological testing to clinical settings where it is feasible to collect and process venous blood. To address this problem we developed a serological test for SARS-CoV-2 IgG antibodies that requires only a single drop of capillary whole blood, collected from a simple finger prick and dried on filter paper (dried blood spot, DBS).MethodsEnzyme linked immunosorbent assay (ELISA) was optimized to detect SARS-CoV-2 IgG antibodies against the receptor-binding domain (RBD) of the spike protein. DBS samples were eluted overnight and transferred to a 96-well plate coated with antigen, and anti-human IgG-HRP was used to generate signal in proportion to bound antibody. DBS samples spiked with anti-SARS IgG antibody, and samples from known positive and negative cases, were compared to evaluate assay performance.ResultsAnalysis of samples with known concentrations of anti-SARS IgG produced the expected pattern of dose-response. Optical density (OD) values were significantly elevated for known positive cases in comparison with samples from unexposed individuals.DiscussionDBS ELISA provides a minimally-invasive alternative to venous blood collection that combines the convenience of sample collection in the home or non-clinical setting with the quantitation of ELISA in the lab. Serological testing for SARS-CoV-2 IgG antibodies in DBS samples should facilitate research across a wide range of community- and population-based settings on seroprevalence, predictors and duration of antibody responses, as well as correlates of protection from reinfection, each of which is critically important for pandemic control.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1532
Author(s):  
Jeffrey Yim ◽  
Olivia Yau ◽  
Darwin F. Yeung ◽  
Teresa S. M. Tsang

Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the galactosidase A (GLA) gene that result in deficient galactosidase A enzyme and subsequent accumulation of glycosphingolipids throughout the body. The result is a multi-system disorder characterized by cutaneous, corneal, cardiac, renal, and neurological manifestations. Increased left ventricular wall thickness represents the predominant cardiac manifestation of FD. As the disease progresses, patients may develop arrhythmias, advanced conduction abnormalities, and heart failure. Cardiac biomarkers, point-of-care dried blood spot testing, and advanced imaging modalities including echocardiography with strain imaging and magnetic resonance imaging (MRI) with T1 mapping now allow us to detect Fabry cardiomyopathy much more effectively than in the past. While enzyme replacement therapy (ERT) has been the mainstay of treatment, several promising therapies are now in development, making early diagnosis of FD even more crucial. Ongoing initiatives involving artificial intelligence (AI)-empowered interpretation of echocardiographic images, point-of-care dried blood spot testing in the echocardiography laboratory, and widespread dissemination of point-of-care ultrasound devices to community practices to promote screening may lead to more timely diagnosis of FD. Fabry disease should no longer be considered a rare, untreatable disease, but one that can be effectively identified and treated at an early stage before the development of irreversible end-organ damage.


2021 ◽  
Vol 136 ◽  
pp. 104739
Author(s):  
Ranya Mulchandani ◽  
Ben Brown ◽  
Tim Brooks ◽  
Amanda Semper ◽  
Nicholas Machin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document