Synthetic origin of Illicit Methylamphetamine in Australia: 2011‐2020

2021 ◽  
Author(s):  
Helen Salouros
Keyword(s):  
2017 ◽  
Vol 14 (6) ◽  
pp. 778-784 ◽  
Author(s):  
Joanna Brzeska

Background: Cross-linking structure of polyurethanes determines no degradability of these materials. However, introducing the hydrolysable substrates (of natural or synthetic origin) into the cross-linked polyurethanes structure makes them biodegradable. Moreover compounds (such as polycaprolactone triol, glycerin, lysine triisocyanate, etc.) that are used for polyurethane cross-linking are degraded in non-toxic products. All these kinds of compounds can be introduced into soft or hard segments via urethane bonds. Objective: The review focuses on kind of multifunctional polyols and isocyanates, and low molecular crosslinkers used for cross-linked polyurethanes obtaining. These compounds are natural substrates (in the native state or after modification) or are synthetic compounds with degradable linkages. They belong to polyesters, plant oils, proteins, saccharides, and others (e.g. lignocellulosic materials), and they are synthesized chemically or via biosynthesis by algae, plants, microorganisms, and by animals. Conclusion: Incorporation of degradable groups (such as ester moieties) into the polymer structure, and using of substrates with the structure known and metabolized by microorganisms for soft or hard segments building, facilitate degradation of cross-linked polyurethanes.


Author(s):  
T. K. Kalenik ◽  
E. V. Dobrynina ◽  
V. M. Ostapenko ◽  
Y. Torii ◽  
J. Hiromi

The article presents a study of the process of isolation of natural blue pigment – phycocyanin from the biomass of blue-green algae Spirulina platensis by water extraction, followed using its water solution as a natural food colorant in the production of milk chocolate. Recently, modern food enterprises are pursuing their policy towards expanding the range of products, which is closely related to the increasing needs of the population in food of a new kind. One of the solutions to this problem is the use of food additives of both natural and synthetic origin. Among the similar components widespread found dyes synthetic origin, which have high coverage rates and relatively low cost. However, many of the permitted in our country synthetic food dyes are banned in several developed countries as potentially dangerous to health. Synthetic dyes of red, yellow and green color have many natural analogues – carotenoids, lutein, chlorophyll, etc., except for the blue dye, the analogue of which is only anthocyanins, which are unstable depending on the pH conditions. In this article were identified phycobiliproteins and chlorophyll a in a water extract of spirulina. The mass concentration of phycobiliproteins and chlorophyll a was determined by spectrophotometric method before and after the addition of ammonium sulfate. A comparative analysis of the effect of fractionation (salting out) on the degree of purification of the phycocyanin solution. Presented and described the technological scheme of extraction of phycocyanin which allows to use it in food technologies as an extract or a dry powder. Established the concentration of phycocyanin extract from blue-green algae spirulina to produce milk blue chocolate. Determined organoleptic and hygienic characteristics of the finished product


2019 ◽  
Vol 0 (1(97)) ◽  
pp. 26-32
Author(s):  
O. S. Burdak ◽  
G. I. Borschevsky ◽  
M. I. Borschevska ◽  
S. V. Oleinik

2021 ◽  
Vol 22 ◽  
Author(s):  
Manoela Daiele Gonçalves ◽  
Fernanda Tomiotto-Pellissier ◽  
Ricardo Luís Nascimento de Matos ◽  
João Paulo Assolini ◽  
Bruna Taciane da Silva Bortoleti ◽  
...  

: The goal of the biotransformation process is to develop structural changes and generate new chemical compounds, which can occur naturally in mammalian and microbial organisms, such as filamentous fungi, and represent a tool to achieve enhanced bioactive compounds. Cunninghamella spp is among the fungal models most widely used in biotransformation processes at phase I and II reactions, mimicking the metabolism of drugs and xenobiotics in mammals and generating new molecules based on substances of natural and synthetic origin. Therefore, the goal of this review is to highlight the studies involving the biotransformation of Cunninghamella species between January 2015 and March 2021, in addition to updating existing studies to identify the similarities between the human metabolite and Cunninghamella patterns of active compounds, with related advantages and challenges, and providing new tools for further studies in this scope.


2019 ◽  
Vol 55 (79) ◽  
pp. 11948-11951
Author(s):  
Tim U. H. Baumeister ◽  
Mona Staudinger ◽  
Marino Wirgenings ◽  
Georg Pohnert

A microalga produces the toxic halogenated anilines 2,4,6-tribromoaniline, 2,4,6-trichloroaniline and their dibromochloro and bromodichloro derivatives that were considered as compounds of exclusive synthetic origin.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 929 ◽  
Author(s):  
Lety del Pilar Fajardo Cabrera de Lima ◽  
Ruth Marlene Campomanes Santana ◽  
Cristian David Chamorro Rodríguez

Researches on thermoplastic composites using natural fiber as reinforcement are increasing, but studies of durability over time are scarce. In this sense the objective of this study is to evaluate changes in the properties of polypropylene/bamboo fiber (PP/BF) composite and the influence of the use of coupling agent (CA) in these composites after natural ageing. The PP/BF (70/30 wt) composites and 3% wt CA (citric acid from natural origin and maleic anhydride grafted polypropylene from petrochemical origin) were prepared by using an internal mixer chamber and then injection-molded. The samples were exposed to natural weathering for a total period of 12 months and characterized before and after exposure. All exposed composites experienced a decrease in their properties, however, the use of CA promoted more stability; in mechanical properties, the composites with CA showed lower loss about 23% in Young′s modulus, 18% in tensile stress at break, and 6% in impact strength. This behavior was similar in thermal and physical properties, the result for the CA of natural origin being similar to that of synthetic origin. These results indicate that the use of a CA may promote higher interaction between the fiber and the polymer. In addition, the CAs of organic origin and synthetic origin exhibited similar responses to natural ageing.


Sign in / Sign up

Export Citation Format

Share Document