Biodegradable Polyurethanes Cross-Linked by Multifunctional Compounds

2017 ◽  
Vol 14 (6) ◽  
pp. 778-784 ◽  
Author(s):  
Joanna Brzeska

Background: Cross-linking structure of polyurethanes determines no degradability of these materials. However, introducing the hydrolysable substrates (of natural or synthetic origin) into the cross-linked polyurethanes structure makes them biodegradable. Moreover compounds (such as polycaprolactone triol, glycerin, lysine triisocyanate, etc.) that are used for polyurethane cross-linking are degraded in non-toxic products. All these kinds of compounds can be introduced into soft or hard segments via urethane bonds. Objective: The review focuses on kind of multifunctional polyols and isocyanates, and low molecular crosslinkers used for cross-linked polyurethanes obtaining. These compounds are natural substrates (in the native state or after modification) or are synthetic compounds with degradable linkages. They belong to polyesters, plant oils, proteins, saccharides, and others (e.g. lignocellulosic materials), and they are synthesized chemically or via biosynthesis by algae, plants, microorganisms, and by animals. Conclusion: Incorporation of degradable groups (such as ester moieties) into the polymer structure, and using of substrates with the structure known and metabolized by microorganisms for soft or hard segments building, facilitate degradation of cross-linked polyurethanes.

2011 ◽  
Vol 197-198 ◽  
pp. 1205-1212
Author(s):  
Xiao Long Ning ◽  
Qiang Xu ◽  
Gui You Wang

A series of cross-linked polyurethane(PU) elastomer samples with various crosslink density were synthesized from polyether diol(PPG2000), 4,4’-diphenylmethane diisocyanate(MDI), 1,4-butanediol(BDO) , trimethylolpropane (TMP) and glycerin. The cross-linking density of the PU elastomers was calculated by Flory–Rehner equation. The degree of hydrogen bonding, the microstructure and the morphologies of these PU materials were characterized by means of FT-IR, DSC and DMA. The experimental results showed that the PU elastomers containing a small amount of crosslink agent ( TMP or glycerin ) may make tanδ to a very low value above the ambient temperature. The PU elastomer samples using glycerin as curing agent can make tanδ to a low value in a lower temperature compared with the ones using TMP as curing agent.


Science ◽  
1963 ◽  
Vol 139 (3554) ◽  
pp. 494-495 ◽  
Author(s):  
J. K. Gillham

2019 ◽  
Vol 5 (2) ◽  
pp. eaau3442 ◽  
Author(s):  
Liju Xu ◽  
Chen Wang ◽  
Yang Cui ◽  
Ailing Li ◽  
Yan Qiao ◽  
...  

Hydrogels from biological sources are expected as potential structural biomaterials, but most of them are either soft or fragile. Here, a new strategy was developed to construct hydrogels that were both stiff and tough via the formation of the conjoined-network, which was distinct from improving homogeneity or incorporating energy dissipation mechanisms (double-network) approaches. Conjoined-network hydrogels stand for a class of hydrogels consisting of two or more networks that are connected by sharing interconnection points to collaborate and featured as follows: (i) All the composed networks had a similar or equal energy dissipation mechanism, and (ii) these networks were intertwined to effectively distribute stress in the whole system. As a specific example, a biogenic conjoined-network hydrogel was prepared by electrostatically cross-linking the chitosan-gelatin composite with multivalent sodium phytate. The combination of high compressive modulus and toughness was realized at the same time in the chitosan-gelatin-phytate system. Moreover, these physical hydrogels exhibited extraordinary self-recovery and fatigue resistance ability. Our results provide a general strategy for the design of biocompatible stiff and tough conjoined-network hydrogels due to a variety of potential cross-linking mechanisms available (e.g., electrostatic attraction, host-guest interaction, and hydrogen bonding).


Author(s):  
D. James Morré ◽  
Charles E. Bracker ◽  
William J. VanDerWoude

Calcium ions in the concentration range 5-100 mM inhibit auxin-induced cell elongation and wall extensibility of plant stems. Inhibition of wall extensibility requires that the tissue be living; growth inhibition cannot be explained on the basis of cross-linking of carboxyl groups of cell wall uronides by calcium ions. In this study, ultrastructural evidence was sought for an interaction of calcium ions with some component other than the wall at the cell surface of soybean (Glycine max (L.) Merr.) hypocotyls.


Author(s):  
K. A. Fisher ◽  
M. G. L. Gustafsson ◽  
M. B. Shattuck ◽  
J. Clarke

The atomic force microscope (AFM) is capable of imaging electrically conductive and non-conductive surfaces at atomic resolution. When used to image biological samples, however, lateral resolution is often limited to nanometer levels, due primarily to AFM tip/sample interactions. Several approaches to immobilize and stabilize soft or flexible molecules for AFM have been examined, notably, tethering coating, and freezing. Although each approach has its advantages and disadvantages, rapid freezing techniques have the special advantage of avoiding chemical perturbation, and minimizing physical disruption of the sample. Scanning with an AFM at cryogenic temperatures has the potential to image frozen biomolecules at high resolution. We have constructed a force microscope capable of operating immersed in liquid n-pentane and have tested its performance at room temperature with carbon and metal-coated samples, and at 143° K with uncoated ferritin and purple membrane (PM).


Author(s):  
Ann M. Thomas ◽  
Virginia Shemeley

Those samples which swell rapidly when exposed to water are, at best, difficult to section for transmission electron microscopy. Some materials literally burst out of the embedding block with the first pass by the knife, and even the most rapid cutting cycle produces sections of limited value. Many ion exchange resins swell in water; some undergo irreversible structural changes when dried. We developed our embedding procedure to handle this type of sample, but it should be applicable to many materials that present similar sectioning difficulties.The purpose of our embedding procedure is to build up a cross-linking network throughout the sample, while it is in a water swollen state. Our procedure was suggested to us by the work of Rosenberg, where he mentioned the formation of a tridimensional structure by the polymerization of the GMA biproduct, triglycol dimethacrylate.


Author(s):  
Masako Osumi ◽  
Misuzu Nagano ◽  
Hiroko Kazama

We have found that microbodies appeared profusely together with a remarkable increase in catalase activity in normal alkane-grown cells of hydrocarbon-utilizing Candida yeasts, and that the microbodies multiplied by division in these cells. These features of Candida yeasts seem to provide a useful model system for studies on the biogenesis of the microbody. Subsequently, we have succeeded in isolation of Candida microbodies in an apparently native state, as judged biochemically and morphologically. The presence of DNA in the purified microbody fraction thus obtained was proved by the diphenylamine method. DNA molecule of about 15 urn in contour length was released from an isolated microbody. The physicochemical analyses of the microbody DNA revealed that its buoyant density differed from nuclear and mitochondrial DNAs. All these results lead us to the possibility that there is a novel type of DNA in microbodies.


Author(s):  
Tokio Nei ◽  
Haruo Yotsumoto ◽  
Yoichi Hasegawa ◽  
Yuji Nagasawa

In order to observe biological specimens in their native state, that is, still containing their water content, various methods of specimen preparation have been used, the principal two of which are the chamber method and the freeze method.Using its recently developed cold stage for installation in the pre-evacuation chamber of a scanning electron microscope, we have succeeded in directly observing a biological specimen in its frozen state without the need for such conventional specimen preparation techniques as drying and metallic vacuum evaporation. (Echlin, too, has reported on the observation of surface structures using the same freeze method.)In the experiment referred to herein, a small sliced specimen was place in the specimen holder. After it was rapidly frozen by freon cooled with liquid nitrogen, it was inserted into the cold stage of the specimen chamber.


Author(s):  
John H. Luft

With information processing devices such as radio telescopes, microscopes or hi-fi systems, the quality of the output often is limited by distortion or noise introduced at the input stage of the device. This analogy can be extended usefully to specimen preparation for the electron microscope; fixation, which initiates the processing sequence, is the single most important step and, unfortunately, is the least well understood. Although there is an abundance of fixation mixtures recommended in the light microscopy literature, osmium tetroxide and glutaraldehyde are favored for electron microscopy. These fixatives react vigorously with proteins at the molecular level. There is clear evidence for the cross-linking of proteins both by osmium tetroxide and glutaraldehyde and cross-linking may be a necessary if not sufficient condition to define fixatives as a class.


Sign in / Sign up

Export Citation Format

Share Document