Expression patterns of the lysophospholipid receptor genes during mouse early development

2008 ◽  
Vol 237 (11) ◽  
pp. 3280-3294 ◽  
Author(s):  
Hideyo Ohuchi ◽  
Aska Hamada ◽  
Hironao Matsuda ◽  
Akira Takagi ◽  
Masayuki Tanaka ◽  
...  
2005 ◽  
Vol 288 (1) ◽  
pp. H448-H448 ◽  
Author(s):  
Andreas Stahl

The heart is a unique organ that can use several fuels for energy production. During development, the heart undergoes changes in fuel supply, and it must be able to respond to these changes. We have examined changes in the expression of several genes that regulate fuel transport and metabolism in rat hearts during early development. At birth, there was increased expression of fatty acid transporters and enzymes of fatty acid metabolism that allow fatty acids to become the major source of energy for cardiac muscle during the first 2 wk of life. At the same time, expression of genes that control glucose transport and oxidation was downregulated. After 2 wk, expression of genes for glucose uptake and oxidation was increased, and expression of genes for fatty acid uptake and utilization was decreased. Expression of carnitine palmitoyltransferase I (CPT I) isoforms during development was different from published data obtained from rabbit hearts. CPT Iα and Iβ isoforms were both highly expressed in hearts before birth, and both increased further at birth. Only after the second week did CPT Iα expression decrease appreciably below the level of CPT Iβ expression. These results represent another example of different expression patterns of CPT I isoforms among various mammalian species. In rats, changes in gene expression followed nutrient availability during development and may render cardiac fatty acid oxidation less sensitive to factors that influence malonyl-CoA content (e.g., fluctuations in glucose concentration) and thereby favor fatty acid oxidation as an energy source for cardiomyocytes in early development.


2020 ◽  
Author(s):  
Jan Hegstad ◽  
Patty T. Huijgens ◽  
Danielle J. Houwing ◽  
Jocelien D.A. Olivier ◽  
Roy Heijkoop ◽  
...  

AbstractSerotonin plays an important role in adult female sexual behavior, however little is known about the influence of serotonin during early development on sexual functioning in adulthood. During early development, serotonin acts as neurotrophic factor, while it functions as a modulatory neurotransmitter in adulthood. The occurrence of serotonin release, could thus have different effects on behavioral outcomes, depending on the developmental period in which serotonin is released. Because serotonin is involved in the development of the HPG axis which is required for puberty establishment, serotonin could also alter expression patterns of for instance the estrogen receptor α (ERα).The aim of our study was to investigate the effects of increased serotonin levels during early development on adult female rat sexual behavior during the full behavioral estrus in a seminatural environment. To do so, rats were perinatally exposed with the selective serotonin reuptake inhibitor (SSRI) fluoxetine (10 mg/kg FLX) and sexual performance was tested during adulthood. All facets of female sexual behavior between the first and last lordosis (behavioral estrus), and within each copulation bout of the behavioral estrus were analyzed. Besides the length and onset of the behavioral estrus and the sexual behaviors patterns, other social and conflict behavior were also investigated. In addition, we studied the effects of perinatal FLX exposure on ERα expression patterns in the medial preoptic nucleus, ventromedial nucleus of the hypothalamus, medial amygdala, bed nucleus of the stria terminalis, and the dorsal raphé nucleus.The results showed that perinatal fluoxetine exposure has no effect on adult female sexual behavior. The behavioral estrus of FLX-females had the same length and pattern as CTR-females. In addition, FLX- and CTR-females showed the same amount of paracopulatory behavior and lordosis, both during the full behavioral estrus and the “most active bout”. Furthermore, no differences were found in the display of social and conflict behaviors, nor in ERα expression patterns in the brain. We conclude that increases in serotonin levels during early development do not have long-term consequences for female sexual behavior in adulthood.


EvoDevo ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Supanat Phuangphong ◽  
Jumpei Tsunoda ◽  
Hiroshi Wada ◽  
Yoshiaki Morino

Abstract Background Despite the conserved pattern of the cell-fate map among spiralians, bivalves display several modified characteristics during their early development, including early specification of the D blastomere by the cytoplasmic content, as well as the distinctive fate of the 2d blastomere. However, it is unclear what changes in gene regulatory mechanisms led to such changes in cell specification patterns. Spiralian-TALE (SPILE) genes are a group of spiralian-specific transcription factors that play a role in specifying blastomere cell fates during early development in limpets. We hypothesised that the expansion of SPILE gene repertoires influenced the evolution of the specification pattern of blastomere cell fates. Results We performed a transcriptome analysis of early development in the purplish bifurcate mussel and identified 13 SPILE genes. Phylogenetic analysis of the SPILE gene in molluscs suggested that duplications of SPILE genes occurred in the bivalve lineage. We examined the expression patterns of the SPILE gene in mussels and found that some SPILE genes were expressed in quartet-specific patterns, as observed in limpets. Furthermore, we found that several SPILE genes that had undergone gene duplication were specifically expressed in the D quadrant, C and D quadrants or the 2d blastomere. These expression patterns were distinct from the expression patterns of SPILE in their limpet counterparts. Conclusions These results suggest that, in addition to their ancestral role in quartet specification, certain SPILE genes in mussels contribute to the specification of the C and D quadrants. We suggest that the expansion of SPILE genes in the bivalve lineage contributed to the evolution of a unique cell fate specification pattern in bivalves.


2003 ◽  
Vol 213 (7) ◽  
pp. 355-359 ◽  
Author(s):  
Nicole Moreau ◽  
Dominique Alfandari ◽  
Alban Gaultier ◽  
H�l�ne Cousin ◽  
Thierry Darrib�re

2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Joana Firmino ◽  
Carlos Carballo ◽  
Paula Armesto ◽  
Marco A. Campinho ◽  
Deborah M. Power ◽  
...  

2021 ◽  
Author(s):  
◽  
Monica P. Strawn

Two experiments were conducted to investigate molecular regulation that impacts fetal brain development in pigs. In the first experiment (Chapter 2), gene expression was profiled by RNA sequencing (RNA-seq) to examine the whole transcriptome of the male (M) and female (F) fetal brain at gestation day (d) 45, 60 and 90. The analysis showed fewer differentially expressed genes (DEGs) in the brain of male and female fetuses in earlier gestation (d45-d60) when compared to late gestation (d60-d90). The homeobox (HOX) A5 gene that regulates pattern formation in early development was in the top upregulated DEGs between d45 to d60 in fetuses of both sexes. This study also found HOX B5 and D3 genes were in the top upregulated genes between d45 and d60 of the fetal brain of females, but not males. The second experiment (Chapter 3) investigated DNA methylation in pigs. DNA methylation in the fetal brain of both sexes at the same three gestation days was performed by enzymatic methyl sequencing (EM-seq). Hotspots of methylation in specific chromosomal regions were observed in the analysis. The analysis identified 1,475 sites in the pig genome that were methylated in the fetal brain, irrespective of sex, during development. The same sites were methylated in a canonically correlated manner in the blood of the adult stage, both in sows and boars. This is consistent with the Dilman theory of developmental aging (DevAge), which suggests that aging and early development of the brain are regulated by common molecular processes. A comparative analysis (Chapter 4) compared the gene expression patterns in the fetal brain and placenta between pigs and mice. The analysis identified 112 genes that were expressed (mean FPKM > 10) in the fetal brain of both species but not expressed (mean FPKM < 1) in the placenta of either species, and 10 genes that were expressed in the placenta of both species but not expressed in the fetal brain. In-silico analysis of the transcription factor binding sites in the 500 bp of the upstream DNA of these common genes revealed that they were commonly regulated by the RE1 silencing transcription factor (REST), which is a multifaceted transcription factor that acts as a master regulator of neurogenesis as well as controls neural excitation and the aging processes.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Wentao Lyu ◽  
Long Zhang ◽  
Yujie Gong ◽  
Xueting Wen ◽  
Yingping Xiao ◽  
...  

Defensins are a class of antimicrobial peptides in vertebrates that function as the first line of innate immunity with potent antimicrobial and immunomodulatory activities. Fourteen defensins, namely, avian β-defensin 1 to 14 (AvBD1-14), have been identified in chickens. Before characterizing the role of AvBDs in innate immunity during the early development of chickens, we collected tissue segments from the liver, spleen, and gastrointestinal (GI) tract including the esophagus, crop, proventriculus, gizzard, duodenum, jejunum, ileum, cecum, and colon from broilers at days 1, 3, 7, 14, and 28. After RNA isolation and reverse transcription, we determined the expression levels of the 14 AvBD genes in these tissues during the first 28 days after hatching by real-time PCR. The results suggested the AvBDs were widely expressed in the chicken liver, spleen, and gastrointestinal (GI) tract. Interestingly, we did not detect AvBD11 expressed in the GI tract, even in the liver and spleen. Additionally, AvBDs were differentially expressed in the chicken GI tract. AvBD5 and AvBD14 were expressed most abundantly in the proximal GI tract, especially the esophagus and crop. Moreover, AvBD5, AvBD7, AvBD9, and AvBD14 were expressed in an inverted-V pattern with the peak being the observed expression at days 3, 7, or 14 in the chicken spleen, esophagus, duodenum, and cecum. Other AvBDs presented biphasic or inverted-V expression patterns in different tissues. The expression levels of all detected AvBDs were strengthened after hatching rather than decreasing steadily. Therefore, AvBDs were found to be expressed widely in the chicken liver, spleen, and GI tract and their expression levels were primarily up regulated during the early development of chicken, implying the potential essential roles of AvBDs in early innate defense and infection resistance of chickens.


Sign in / Sign up

Export Citation Format

Share Document