Patterns of muscular strain in the embryonic heart wall

2009 ◽  
Vol 238 (8) ◽  
pp. spcone-spcone
Author(s):  
Brooke J. Damon ◽  
Mathieu Rémond ◽  
Michael R. Bigelow ◽  
Thomas C. Trusk ◽  
Wenjie Xie ◽  
...  
Keyword(s):  
Development ◽  
1969 ◽  
Vol 22 (3) ◽  
pp. 333-348
Author(s):  
Francis J. Manasek

The mature heart may be thought of as consisting of three layers, endocardium, myocardium, and an outer investing tissue called the epicardium. During early formation of the tubular heart of chick embryos, at about the 8-somite stage, two tissue layers become clearly discernible with the light microscope: the endocardium and the developing myocardial wall. The outer epicardial layer does not appear until later in development. It is generally accepted that embryonic heart wall or ‘epimyocardium’ is composed of muscle and undifferentiated cells. As its name implies, the epimyocardium is thought to give rise to myocardium and epicardium. Kurkiewicz (1909) suggested that the epicardium was not an epimyocardial derivative but rather is formed from cells originating in the sinus venosus region, which migrate over the surface of the heart. Nevertheless, it has become generally accepted that the outer cell layer of the embryonic heart wall differentiates in situ to give rise to the definitive visceral epicardium (Patten, 1953).


Author(s):  
Jörg Männer ◽  
Talat Mesud Yelbuz

The early embryonic heart is a multi-layered tube consisting of (1) an outer myocardial tube; (2) an inner endocardial tube; and (3) an extracellular matrix layer interposed between myocardium and endocardium, called “cardiac jelly” (CJ). During the past decades, research on CJ has mainly focused on its molecular and cell biological aspects. This review focuses on the morphological and biomechanical aspects of CJ. Special attention is given to (1) the spatial distribution and fiber architecture of CJ; (2) the morphological dynamics of CJ during the cardiac cycle; and (3) the removal/remodeling of CJ during advanced heart looping stages, which leads to the formation of ventricular trabeculations and endocardial cushions. CJ acts as a hydraulic skeleton displaying striking structural and functional similarities with the mesoglea of jellyfish. CJ not only represents a filler substance, facilitating end-systolic occlusion of the embryonic heart lumen. Its elastic components antagonize the systolic deformations of the heart wall and thereby power the refilling phase of the ventricular tube. Non-uniform spatial distribution of CJ generates non-circular cross sections of the opened endocardial tube (initially elliptic, later deltoid), which seem to be advantageous for valveless pumping. Endocardial cushions arise from non-removed remnants of the original CJ.


2009 ◽  
Vol 238 (6) ◽  
pp. 1535-1546 ◽  
Author(s):  
Brooke J. Damon ◽  
Mathieu C. Rémond ◽  
Michael R. Bigelow ◽  
Thomas C. Trusk ◽  
Wenjie Xie ◽  
...  
Keyword(s):  

2016 ◽  
Vol 21 (11) ◽  
pp. 1 ◽  
Author(s):  
Stephanie Stovall ◽  
Madeline Midgett ◽  
Kent Thornburg ◽  
Sandra Rugonyi

2014 ◽  
Vol 20 (4) ◽  
pp. 1111-1119 ◽  
Author(s):  
Monique Y. Rennie ◽  
Curran G. Gahan ◽  
Claudia S. López ◽  
Kent L. Thornburg ◽  
Sandra Rugonyi

AbstractEarly embryonic heart development is a period of dynamic growth and remodeling, with rapid changes occurring at the tissue, cell, and subcellular levels. A detailed understanding of the events that establish the components of the heart wall has been hampered by a lack of methodologies for three-dimensional (3D), high-resolution imaging. Focused ion beam scanning electron microscopy (FIB-SEM) is a novel technology for imaging 3D tissue volumes at the subcellular level. FIB-SEM alternates between imaging the block face with a scanning electron beam and milling away thin sections of tissue with a FIB, allowing for collection and analysis of 3D data. FIB-SEM was used to image the three layers of the day 4 chicken embryo heart: myocardium, cardiac jelly, and endocardium. Individual images obtained with FIB-SEM were comparable in quality and resolution to those obtained with transmission electron microscopy. Up to 1,100 serial images were obtained in 4 nm increments at 4.88 nm resolution, and image stacks were aligned to create volumes 800–1,500 μm3 in size. Segmentation of organelles revealed their organization and distinct volume fractions between cardiac wall layers. We conclude that FIB-SEM is a powerful modality for 3D subcellular imaging of the embryonic heart wall.


2019 ◽  
Vol 6 (1) ◽  
pp. 12 ◽  
Author(s):  
Jörg Männer ◽  
Talat Mesud Männer

The early embryonic heart is a multi-layered tube consisting of (1) an outer myocardial tube; (2) an inner endocardial tube; and (3) an extracellular matrix layer interposed between the myocardium and endocardium, called “cardiac jelly” (CJ). During the past decades, research on CJ has mainly focused on its molecular and cellular biological aspects. This review focuses on the morphological and biomechanical aspects of CJ. Special attention is given to (1) the spatial distribution and fiber architecture of CJ; (2) the morphological dynamics of CJ during the cardiac cycle; and (3) the removal/remodeling of CJ during advanced heart looping stages, which leads to the formation of ventricular trabeculations and endocardial cushions. CJ acts as a hydraulic skeleton, displaying striking structural and functional similarities with the mesoglea of jellyfish. CJ not only represents a filler substance, facilitating end-systolic occlusion of the embryonic heart lumen. Its elastic components antagonize the systolic deformations of the heart wall and thereby power the refilling phase of the ventricular tube. Non-uniform spatial distribution of CJ generates non-circular cross sections of the opened endocardial tube (initially elliptic, later deltoid), which seem to be advantageous for valveless pumping. Endocardial cushions/ridges are cellularized remnants of non-removed CJ.


Author(s):  
A.M. Pucci ◽  
C. Fruschelli ◽  
A. Rebuffat ◽  
M. Guarna ◽  
C. Alessandrini ◽  
...  

Amphibians have paired muscular pump organs, called “lymph heart”, which rhythmically pump back the lymph from the large subcutaneous lymph sacs into the veins. The structure and ultrastructure of these organs is well known but to date there is a lack of information about the innervation of lymph hearts. Therefore has been carried out an ultrastructural study in order to study the distribution of the nerve fibers, and the morphology of the neuromuscular junctions in the lymph heart wall.


Sign in / Sign up

Export Citation Format

Share Document