CNS midline cells influence the division and survival of lateral glia in theDrosophila nervous system

genesis ◽  
2007 ◽  
Vol 45 (5) ◽  
pp. 266-274 ◽  
Author(s):  
So Hee Kim ◽  
Hyeon Ju Kim ◽  
Soo Youn Kim ◽  
Sang-Hak Jeon ◽  
Sang Hee Kim
Development ◽  
1994 ◽  
Vol 120 (12) ◽  
pp. 3563-3569 ◽  
Author(s):  
K.A. Wharton ◽  
R.G. Franks ◽  
Y. Kasai ◽  
S.T. Crews

Central nervous system midline cells constitute a discrete group of Drosophila embryonic cells with numerous functional and developmental roles. Corresponding to their separate identity, the midline cells display patterns of gene expression distinct from the lateral central nervous system. A conserved 5 base pair sequence (ACGTG) was identified in central nervous system midline transcriptional enhancers of three genes. Germ-line transformation experiments indicate that this motif forms the core of an element required for central nervous system midline transcription. The central nervous system midline element is related to the mammalian xenobiotic response element, which regulates transcription of genes that metabolize aromatic hydrocarbons. These data suggest a model whereby related basic-helix-loop-helix-PAS proteins interact with asymmetric E-box-like target sequences to control these disparate processes.


Development ◽  
1994 ◽  
Vol 120 (1) ◽  
pp. 123-133 ◽  
Author(s):  
T.V. Menne ◽  
C. Klambt

The commissures of the Drosophila central nervous system (CNS) are formed in close relation to the ventral midline cells, a morphologically distinct set of cells located at the midline of the developing CNS. To analyze the function of these cells during commissure formation, we looked for mutations that result in the absence of commissures. One example of a gene that can give rise to such a phenotype is the neurogenic gene Notch. Here we show that mutant Notch embryos are devoid of commissural connections and have an abnormal midline. The midline cells of the embryonic Drosophila CNS are specified during the blastoderm stage about two hours before the first neuroblasts start to delaminate from the neurogenic region. To analyze Notch function for commissure development further, we took advantage of the Notchts1 allele. Temperature-shift experiments demonstrated that the lack of commissures in mutant Notch embryos results from defects in the analage of the CNS midline cells. Here maternal as well as zygotic Notch function are required for the correct activation of the gene single-minded, since mutant Notch embryos derived from germ-line clones lack most of the single-minded-positive midline cells.


2002 ◽  
Vol 22 (12) ◽  
pp. 4147-4157 ◽  
Author(s):  
Eleni Goshu ◽  
Hui Jin ◽  
Rachel Fasnacht ◽  
Mike Sepenski ◽  
Jacques L. Michaud ◽  
...  

ABSTRACT The mouse genome contains two Sim genes, Sim1 and Sim2. They are presumed to be important for central nervous system (CNS) development because they are homologous to the Drosophila single-minded (sim) gene, mutations in which cause a complete loss of CNS midline cells. In the mammalian CNS, Sim2 and Sim1 are coexpressed in the paraventricular nucleus (PVN). While Sim1 is essential for the development of the PVN (J. L. Michaud, T. Rosenquist, N. R. May, and C.-M. Fan, Genes Dev. 12:3264-3275, 1998), we report here that Sim2 mutant has a normal PVN. Analyses of the Sim1 and Sim2 compound mutants did not reveal obvious genetic interaction between them in PVN histogenesis. However, Sim2 mutant mice die within 3 days of birth due to lung atelectasis and breathing failure. We attribute the diminished efficacy of lung inflation to the compromised structural components surrounding the pleural cavity, which include rib protrusions, abnormal intercostal muscle attachments, diaphragm hypoplasia, and pleural mesothelium tearing. Although each of these structures is minimally affected, we propose that their combined effects lead to the mechanical failure of lung inflation and death. Sim2 mutants also develop congenital scoliosis, reflected by the unequal sizes of the left and right vertebrae and ribs. The temporal and spatial expression patterns of Sim2 in these skeletal elements suggest that Sim2 regulates their growth and/or integrity.


2006 ◽  
Vol 294 (2) ◽  
pp. 509-524 ◽  
Author(s):  
Scott R. Wheeler ◽  
Joseph B. Kearney ◽  
Amaris R. Guardiola ◽  
Stephen T. Crews

Cell ◽  
1990 ◽  
Vol 63 (1) ◽  
pp. 63-75 ◽  
Author(s):  
John R. Nambu ◽  
Robert G. Franks ◽  
Song Hu ◽  
Stephen T. Crews

2004 ◽  
Vol 275 (2) ◽  
pp. 473-492 ◽  
Author(s):  
Joseph B. Kearney ◽  
Scott R. Wheeler ◽  
Patricia Estes ◽  
Beth Parente ◽  
Stephen T. Crews

Development ◽  
1993 ◽  
Vol 118 (3) ◽  
pp. 893-901 ◽  
Author(s):  
S.H. Kim ◽  
S.T. Crews

The ventral epidermis of Drosophila melanogaster is derived from longitudinal rows of ectodermal precursor cells that divide and expand to form the ventral embryonic surface. The spitz class genes are required for the proper formation of the larval ventral cuticle. Using a group of enhancer trap lines that stain subsets of epidermal cells, it is shown here that spitz class gene function is necessary for ventral epidermal development and gene expression. Analysis of single-minded mutant embryos implies that ventral epidermal cell fate is influenced by the CNS midline cells.


Sign in / Sign up

Export Citation Format

Share Document