scholarly journals Is the incidence of survival in interior Pleistocene refugia (nunataks) underestimated? Phylogeography of the high mountain plant Androsace alpina (Primulaceae) in the European Alps revisited

2019 ◽  
Vol 9 (7) ◽  
pp. 4078-4086 ◽  
Author(s):  
Peter Schönswetter ◽  
Gerald M. Schneeweiss
2021 ◽  
Vol 35 ◽  
pp. 102730
Author(s):  
Jacob Morales ◽  
Paloma Vidal-Matutano ◽  
Efraim Marrero-Salas ◽  
Pedro Henríquez-Valido ◽  
Alberto Lacave-Hernández ◽  
...  

2017 ◽  
Vol 56 (6) ◽  
pp. 1707-1729 ◽  
Author(s):  
Marlis Hofer ◽  
Johanna Nemec ◽  
Nicolas J. Cullen ◽  
Markus Weber

AbstractThis study explores the potential of different predictor strategies for improving the performance of regression-based downscaling approaches. The investigated local-scale target variables are precipitation, air temperature, wind speed, relative humidity, and global radiation, all at a daily time scale. Observations of these target variables are assessed from three sites in close proximity to mountain glaciers: 1) the Vernagtbach station in the European Alps, 2) the Artesonraju measuring site in the tropical South American Andes, and 3) the Mount Brewster measuring site in the Southern Alps of New Zealand. The large-scale dataset being evaluated is the ERA-Interim dataset. In the downscaling procedure, particular emphasis is put on developing efficient yet not overfit models from the limited information in the temporally short (typically a few years) observational records of the high mountain sites. For direct (univariate) predictors, optimum scale analysis turns out to be a powerful means to improve the forecast skill without the need to increase the downscaling model complexity. Yet the traditional (multivariate) predictor sets show generally higher skill than the direct predictors for all variables, sites, and days of the year. Only in the case of large sampling uncertainty (identified here to particularly affect observed precipitation) is the use of univariate predictor options justified. Overall, the authors find a range in forecast skill among the different predictor options applied in the literature up to 0.5 (where 0 indicates no skill, and 1 represents perfect skill). This highlights that a sophisticated predictor selection (as presented in this study) is essential in the development of realistic, local-scale scenarios by means of downscaling.


PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0200216 ◽  
Author(s):  
Jesús López-Angulo ◽  
David S. Pescador ◽  
Ana M. Sánchez ◽  
Maritza A. K. Mihoč ◽  
Lohengrin A. Cavieres ◽  
...  

2021 ◽  
Author(s):  
Diego Cusicanqui ◽  
Antoine Rabatel ◽  
Xavier Bodin ◽  
Christian Vincent ◽  
Emmanuel Thibert ◽  
...  

<p>Glacial and periglacial environments are highly sensitive to climate change, even more in mountain areas where warming is faster and, as a consequence, perennial features of the cryosphere like glaciers and permafrost have been fast evolving in the last decades. In the European Alps, glaciers retreat and permafrost thawing have led to the destabilization of mountain slopes, threatening human infrastructures and inhabitants. The observation of such changes at decadal scales is often limited to sparse in situ observations.</p><p>Here, we present three study cases of mountain permafrost sites based on a multidisciplinary approach over almost seven decades. The goal is to investigate and quantify morphodynamic changes and understand the causes of these evolutions. We used stereo-photogrammetry techniques to generate orthophotos and (DEMs) from historical aerial images (available, in France since 1940s). From this, we produced diachronic comparison of DEMs to quantify vertical surface changes, as well as feature tracking techniques of multi-temporal digital orthophotos for estimating horizontal displacement rates. Locally, high-resolution datasets (i.e. LiDAR surveys, UAV acquisitions and Pléiades stereo imagery) were also exploited to improve the quality of photogrammetric products. In addition, we combine these results with geophysics (ERT and GPR) to estimate the ice content, geomorphological surveys to describe the complex environments and the relationship with climatic forcing.</p><p>The first study case is the Laurichard rock glacier, where we were able to quantify changes of emergence velocities, fluxes, and volume. Together with an acceleration of surface velocity, important surface lowering have been found over the period 1952-2019, with a striking spatiotemporal reversal of volume balance.</p><p>The second study site is the Tignes glacial and periglacial complex, where the changes of thermokarstic lakes surface were quantified. The results suggest that drainage probably affects the presence and the evolution of the largest thermorkarst. Here too, a significant ice loss was found on the central channel concomitant to an increase in surface velocities.</p><p>The third study site is the Chauvet glacial and periglacial complex where several historical outburst floods are recorded during the 20th century, likely related to the permafrost degradation, the presence of thermokarstic lakes, and an intra-glacial channel. The lateral convergence of ice flow, due to the terrain subsidence caused by the intense melting, may cause the closure of the channel with a subsequent refill of the thermokarstic depression and finally a new catastrophic event.</p><p>Our results highlight the important value of historical aerial photography for having a longer perspective on the evolution of the high mountain cryosphere, thanks to accurate quantification of pluri-annual changes of volume and surface velocity. For instance, we could evidence : (1) a speed-up of the horizontal displacements since the 1990s in comparison with the previous decades; (2) an important surface lowering related to various melting processes (ice-core, thermokarst) for the three study sites; (3) relationships between the observed evolution and the contemporaneous climate warming, with a long-term evolution controlled by the warming of the ground and short-term changes that may relate to snow or precipitation or to the activity of the glacial-periglacial landforms.</p>


2021 ◽  
Author(s):  
Felix Greifeneder ◽  
Klaus Haslinger ◽  
Georg Seyerl ◽  
Claudia Notarnicola ◽  
Massimiliano Zappa ◽  
...  

<p>Soil Moisture (SM) is one of the key observable variables of the hydrological cycle and therefore of high importance for many disciplines, from meteorology to agriculture. This contribution presents a comparison of different products for the mapping of SM. The aim was to identify the best available solution for the operational monitoring of SM as a drought indicator for the entire area of the European Alps, to be applied in the context of the Interreg Alpine Space project, the Alpine Drought Observatory.</p><p>The following datasets were considered: Soil Water Index (SWI) of the Copernicus Global Land Service [1]; ERA5 [2]; ERA5-Land [3]; UERRA MESCAN-SURFEX land-surface component [4]. All four datasets offer a different set of advantages and disadvantages related to their spatial resolution, update frequency and latency. As a reference, modelled SM time-series for 307 catchments in Switzerland were used [5]. Switzerland is well suited as a test case for the Alps, due to its different landscapes, from lowlands to high mountain.</p><p>The intercomparison was based on a correlation analysis of daily absolute SM values and the daily anomalies. Furthermore, the probability to detect certain events, such as persistent dry conditions, was evaluated for each of the SM datasets. First results showed that the temporal dynamics (both in terms of absolute values as well as anomalies) of the re-analysis datasets show a high correlation to the reference. A clear gradient, from the lowlands in the north to the high mountains in the south, with decreasing correlation is evident. The SWI data showed weak correlations to the temporal dynamics of the reference in general. Especially, during spring and the first part of the summer SM is significantly underestimated. This might be related to the influence of snowmelt, which is not taken into account in the two-layer water balance model used to model SM for deeper soil layers. Low coverage in the high mountain areas hampered a thorough comparison with the reference in these areas.</p><p>The results presented here are the foundation for selecting a suitable source for the operational mapping of SM for the Alpine Drought Observatory. The next steps will be to test the potential of MESCAN-SURFEX and ERA5-Land for the downscaling of ERA5 to take advantage of the low latency of ERA5 and the improved spatial detail of the other two datasets.  </p><p>Literature:</p><p>[1]  B. Bauer-marschallinger et al., “Sentinel-1 : Harnessing Assets and Overcoming Obstacles,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 520–539, 2019, doi: 10.1109/TGRS.2018.2858004.</p><p>[2]  H. Hersbach et al., “ERA5 hourly data on single levels from 1979 to present.” Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2018.</p><p>[3]  Copernicus Climate Change Service, “ERA5-Land hourly data from 2001 to present.” ECMWF, 2019, doi: 10.24381/CDS.E2161BAC.</p><p>[4]  E. Bazile, et al., “MESCAN-SURFEX Surface Analysis. Deliverable D2.8 of the UERRA Project,” 2017. Accessed: Jan. 11, 2020. [Online]. Available: http://www.uerra.eu/publications/deliverable-reports.html.</p><p>[5]  Brunner, et al.: Extremeness of recent drought events in    Switzerland: dependence on variable and return period choice, Nat. Hazards Earth Syst. Sci., 19, 2311–2323, https://doi.org/10.5194/nhess-19-2311-2019, 2019.</p>


Ecology ◽  
1976 ◽  
Vol 57 (5) ◽  
pp. 1091
Author(s):  
Jack Major ◽  
A. I. Tolmachev

2018 ◽  
Vol 115 (8) ◽  
pp. 1848-1853 ◽  
Author(s):  
Sabine B. Rumpf ◽  
Karl Hülber ◽  
Günther Klonner ◽  
Dietmar Moser ◽  
Martin Schütz ◽  
...  

Many studies report that mountain plant species are shifting upward in elevation. However, the majority of these reports focus on shifts of upper limits. Here, we expand the focus and simultaneously analyze changes of both range limits, optima, and abundances of 183 mountain plant species. We therefore resurveyed 1,576 vegetation plots first recorded before 1970 in the European Alps. We found that both range limits and optima shifted upward in elevation, but the most pronounced trend was a mean increase in species abundance. Despite huge species-specific variation, range dynamics showed a consistent trend along the elevational gradient: Both range limits and optima shifted upslope faster the lower they were situated historically, and species’ abundance increased more for species from lower elevations. Traits affecting the species’ dispersal and persistence capacity were not related to their range dynamics. Using indicator values to stratify species by their thermal and nutrient demands revealed that elevational ranges of thermophilic species tended to expand, while those of cold-adapted species tended to contract. Abundance increases were strongest for nutriphilous species. These results suggest that recent climate warming interacted with airborne nitrogen deposition in driving the observed dynamics. So far, the majority of species appear as “winners” of recent changes, yet “losers” are overrepresented among high-elevation, cold-adapted species with low nutrient demands. In the decades to come, high-alpine species may hence face the double pressure of climatic changes and novel, superior competitors that move up faster than they themselves can escape to even higher elevations.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Sabine B. Rumpf ◽  
Karl Hülber ◽  
Johannes Wessely ◽  
Wolfgang Willner ◽  
Dietmar Moser ◽  
...  

Abstract Mountain plant species shift their elevational ranges in response to climate change. However, to what degree these shifts lag behind current climate change, and to what extent delayed extinctions and colonizations contribute to these shifts, are under debate. Here, we calculate extinction debt and colonization credit of 135 species from the European Alps by comparing species distribution models with 1576 re-surveyed plots. We find extinction debt in 60% and colonization credit in 38% of the species, and at least one of the two in 93%. This suggests that the realized niche of very few of the 135 species fully tracks climate change. As expected, extinction debts occur below and colonization credits occur above the optimum elevation of species. Colonization credits are more frequent in warmth-demanding species from lower elevations with lower dispersal capability, and extinction debts are more frequent in cold-adapted species from the highest elevations. Local extinctions hence appear to be already pending for those species which have the least opportunity to escape climate warming.


Sign in / Sign up

Export Citation Format

Share Document