scholarly journals Feedback of coastal marshes to climate change: Long‐term phenological shifts

2019 ◽  
Vol 9 (12) ◽  
pp. 6785-6797 ◽  
Author(s):  
Yu Mo ◽  
Michael S. Kearney ◽  
R. Eugene Turner
2020 ◽  
Author(s):  
Heng-Xing Zou ◽  
Volker H. W. Rudolf

AbstractThe relative arrival time of species often affects species interactions within a community, contributing to priority effects. Recent studies on phenological shifts under climate change have generated renewed interest on priority effects, but their role in shaping long-term dynamics of seasonal communities is poorly resolved. Here we use a general stage-structure competition model to determine how different types of priority effects influence long-term coexistence of species in seasonal systems. We show that while shifts in mean and variance of relative arrival time can alter persistence and coexistence conditions of species, these effects depend on season length and type of priority effect. In “slow” systems with one or a few cohorts per season, changes in mean and seasonal variation of relative arrival time strongly altered species persistence through trait-mediated priority effects. In contrast, competition outcome in “fast” systems is largely determined by numeric priority effects due to interaction between many overlapping generations. These results suggest that empirically observed priority effects may arise from fundamentally different mechanisms, and that fast-generating systems may be less impacted by seasonal variation in phenology. Our model provides important insight into how natural communities respond to increasing variation in phenology over seasons under climate change.


2017 ◽  
Vol 372 (1712) ◽  
pp. 20160032 ◽  
Author(s):  
Robert I. Colautti ◽  
Jon Ågren ◽  
Jill T. Anderson

Warmer and drier climates have shifted phenologies of many species. However, the magnitude and direction of phenological shifts vary widely among taxa, and it is often unclear when shifts are adaptive or how they affect long-term viability. Here, we model evolution of flowering phenology based on our long-term research of two species exhibiting opposite shifts in floral phenology: Lythrum salicaria , which is invasive in North America, and the sparse Rocky Mountain native Boechera stricta . Genetic constraints are similar in both species, but differences in the timing of environmental conditions that favour growth lead to opposite phenological shifts under climate change. As temperatures increase, selection is predicted to favour earlier flowering in native B. stricta while reducing population viability, even if populations adapt rapidly to changing environmental conditions. By contrast, warming is predicted to favour delayed flowering in both native and introduced L. salicaria populations while increasing long-term viability. Relaxed selection from natural enemies in invasive L. salicaria is predicted to have little effect on flowering time but a large effect on reproductive fitness. Our approach highlights the importance of understanding ecological and genetic constraints to predict the ecological consequences of evolutionary responses to climate change on contemporary timescales. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’.


2021 ◽  
Author(s):  
Michael Stemkovski ◽  
James R. Bell ◽  
Elizabeth R. Ellwood ◽  
Brian D. Inouye ◽  
Hiromi Kobori ◽  
...  

Advancing spring phenology is a well-documented consequence of anthropogenic climate change, but it is not well understood how climate change will affect the variability of phenology year-to-year. Species' phenological timings reflect adaptation to a broad suite of abiotic needs (e.g. thermal energy) and biotic interactions (e.g. predation and pollination), and changes in patterns of variability may disrupt those adaptations and interactions. Here, we present a geographically and taxonomically broad analysis of phenological shifts, temperature sensitivity, and changes in inter-annual variance encompassing nearly 10,000 long-term phenology time-series representing over 1,000 species across much of the northern hemisphere. We show that early-season species in colder and less seasonal regions were the most sensitive to temperature change and had the least variable phenologies. The timings of leaf-out, flowering, insect first-occurrence, and bird arrival have all shifted earlier and tend to be less variable in warmer years. This has led leaf-out and flower phenology to become moderately but significantly less variable over time. These simultaneous changes in phenological averages and the variation around them have the potential to influence mismatches among interacting species that are difficult to anticipate if shifts in average are studied in isolation.


Author(s):  
Minkyung Kim ◽  
Sojeong Lee ◽  
Hakyung Lee ◽  
Sangdon Lee

The response of the phenological events of individual species to climate change is not isolated, but is connected through interaction with other species at the same or adjacent trophic level. Using long-term phenological data observed since 1976 in Korea, whose temperature has risen more steeply than the average global temperature, this study conducted phenological analysis (differ-ences in the phenology of groups, differences in phenological shifts due to climate change, differ-ences in phenological sensitivity to climate by groups, and the change of phenological day differ-ences among interacting groups). The phenological shift of the producer group (plants) was found to be negative in all researched species, which means that it blooms quickly over the years. The regression slope of consumers (primary consumers and secondary consumers) was generally posi-tive which means that the phenological events of these species tended to be later during the study period. The inter-regional deviation of phenological events was not large for any plant except for plum tree and Black locust. In addition, regional variations in high trophic levels of secondary consumers tended to be greater than that of producers and primary consumers. Among the studied species, plum was the most sensitive to temperature, and when the temperature rose by 1 °C, the flowering time of plum decreased by 7.20 days. As a result of checking the day differences in the phenological events of the interacting species, the phenological events of species were reversed, and butterflies have appeared earlier than plum, Korean forsythia, and Korean rosebay since 1990. Using long-term data from Korea, this study investigated differences in phenological reactions among trophic groups. There is a possibility of a phenological mismatch between trophic groups in the future if global warming continues due to differences in sensitivity to climate and phenological shifts between trophic levels.


Author(s):  
Nguyen Thi Thuc An ◽  
Dau Kieu Ngoc Anh

The 2018 Nobel Economics Prize was awarded to two American economists - William D. Nordhaus and Paul M. Romer - who designed methods for better assessing environmental issues and technological advances on growth. This year’s Laureates, Nordhaus was the first person to create an intergrated model to assess interactions between society and nature and Romer laid the foundation for what is now called endogenous growth theory. According to the Swedish Royal Academy of Sciences, these two macroeconomists’ research have helped “significantly broaden the scope of economic analysis by constructing models that explain how the market economy interacts with nature and knowledge” which integrates climate change measures into long-term sustainable economic growth. Keywords Nobel in economics, William D. Nordhaus, Paul M. Romer, climate change, endogenous growth theory, economic growth References [1] Y Vân (2018), “Lý lịch 'khủng' của hai nhà khoa học vừa giành giải Nobel Kinh tế 2018”, Vietnambiz, đăng tải ngày 08/10/2018, https://vietnambiz.vn/ly-lich-khung-cua-hai-nha-khoa-hoc-vua-gianh-giai-nobel-kinh-te-2018-95776.html[2] Jonas O. Bergman, Rich Miller (2018), “Nordhaus, Romer Win Nobel for Thinking on Climate, Innovation”, đăng tải ngày 8/10/2018, https://www.bloomberg.com/news/articles/2018-10-08/nordhaus-romer-win-2018-nobel-prize-in-economic-sciences [3] Antonin Pottier (2018), “Giải Nobel” William Nordhaus có thật sự nghiêm túc?”, Nguyễn Đôn Phước dịch, đăng tải ngày 11/10/2018, http://www.phantichkinhte123.com/2018/10/giai-nobel-william-nordhaus-co-that-su.html[4] Thăng Điệp (2018), “Giải Nobel kinh tế 2018 về tay hai người Mỹ”, đăng tải ngày 8/10/2018, http://vneconomy.vn/giai-nobel-kinh-te-2018-ve-tay-hai-nguoi-my-20181008185809239.htm[5] Lars P. Syll (2018), “Cuối cùng - Paul Romer cũng có được giải thưởng Nobel”, Huỳnh Thiện Quốc Việt dịch, đăng tải ngày 14/10/2018, http://www.phantichkinhte123.com/2018/10/cuoi-cung-paul-romer-cung-co-uoc-giai.html[6] Phương Võ (2018), “Nobel Kinh tế 2018: Chạm tới bài toán khó của thời đại”, đăng tải ngày 9/10/2018, https://nld.com.vn/thoi-su-quoc-te/nobel-kinh-te-2018-cham-toi-bai-toan-kho-cua-thoi-dai-20181008221734228.htm[7] Đông Phong (2018), “Nobel Kinh tế cho giải pháp phát triển bền vững và phúc lợi người dân”, đăng tải ngày 8/10/2018, https://news.zing.vn/nobel-kinh-te-cho-giai-phap-phat-trien-ben-vung-va-phuc-loi-nguoi-dan-post882860.html[8] Thanh Trúc (2018), “Giải Nobel kinh tế 2018: Thay đổi tư duy về biến đổi khí hậu”, https://tusach.thuvienkhoahoc.com/wiki/Gi%E1%BA%A3i_Nobel_kinh_t%E1%BA%BF_2018:_Thay_%C4%91%E1%BB%95i_t%C6%B0_duy_v%E1%BB%81_bi%E1%BA%BFn_%C4%91%E1%BB%95i_kh%C3%AD_h%E1%BA%ADu[9] Cẩm Anh (2018), “Nobel kinh tế 2018: Lời giải cho tăng trưởng kinh tế bền vững”, đăng tải ngày 11/10/2018, http://enternews.vn/nobel-kinh-te-2018-loi-giai-cho-tang-truong-kinh-te-ben-vung-137600.html.


2019 ◽  
pp. 79-95
Author(s):  
N.E. Terentiev

Based on the latest data, paper investigates the dynamics of global climate change and its impact on economic growth in the long-term. The notion of climate risk is considered. The main directions of climate risk management policies are analyzed aimed, first, at reducing anthropogenic greenhouse gas emissions through technological innovation and structural economic shifts; secondly, at adaptation of population, territories and economic complexes to the irreparable effects of climate change. The problem of taking into account the phenomenon of climate change in the state economic policy is put in the context of the most urgent tasks of intensification of long-term socio-economic development and parrying strategic challenges to the development of Russia.


2021 ◽  
pp. 108602662110316
Author(s):  
Tiziana Russo-Spena ◽  
Nadia Di Paola ◽  
Aidan O’Driscoll

An effective climate change action involves the critical role that companies must play in assuring the long-term human and social well-being of future generations. In our study, we offer a more holistic, inclusive, both–and approach to the challenge of environmental innovation (EI) that uses a novel methodology to identify relevant configurations for firms engaging in a superior EI strategy. A conceptual framework is proposed that identifies six sets of driving characteristics of EI and two sets of beneficial outcomes, all inherently tensional. Our analysis utilizes a complementary rather than an oppositional point of view. A data set of 65 companies in the ICT value chain is analyzed via fuzzy-set comparative analysis (fsQCA) and a post-QCA procedure. The results reveal that achieving a superior EI strategy is possible in several scenarios. Specifically, after close examination, two main configuration groups emerge, referred to as technological environmental innovators and organizational environmental innovators.


Sign in / Sign up

Export Citation Format

Share Document