scholarly journals High genetic diversity in a small population: the case of C hilean blue whales

2014 ◽  
Vol 4 (8) ◽  
pp. 1398-1412 ◽  
Author(s):  
Juan P. Torres‐Florez ◽  
Rodrigo Hucke‐Gaete ◽  
Howard Rosenbaum ◽  
Christian C. Figueroa
2016 ◽  
Vol 3 (8) ◽  
pp. 160253 ◽  
Author(s):  
Y. C. Tay ◽  
M. W. P. Chng ◽  
W. W. G. Sew ◽  
F. E. Rheindt ◽  
K. P. P. Tun ◽  
...  

The Coral Triangle is widely considered the most important centre of marine biodiversity in Asia while areas on its periphery such as the South China Sea, have received much less interest. Here, we demonstrate that a small population of the knobbly sea star Protoreaster nodosus in Singapore has similarly high levels of genetic diversity as comparable Indonesian populations from the Coral Triangle. The high genetic diversity of this population is remarkable because it is maintained despite decades of continued anthropogenic disturbance. We postulate that it is probably due to broadcast spawning which is likely to maintain high levels of population connectivity. To test this, we analysed 6140 genome-wide single nucleotide polymorphism (SNP) loci for Singapore's populations and demonstrate a pattern of near panmixia. We here document a second case of high genetic diversity and low genetic structure for a broadcast spawner in Singapore, which suggests that such species have high resilience against anthropogenic disturbances. The study demonstrates the feasibility and power of using genome-wide SNPs for connectivity studies of marine invertebrates without a sequenced genome.


2005 ◽  
Vol 53 (4) ◽  
pp. 367 ◽  
Author(s):  
R. C. Jones ◽  
G. E. McKinnon ◽  
B. M. Potts ◽  
R. E. Vaillancourt

Eucalyptus morrisbyi is an endangered eucalypt, restricted to four populations on the island of Tasmania. The two main populations are separated by 20 km, occurring in the Risdon Hills and on Calverts Hill, and differ markedly in size and health. Although they are both in reserves, the small population at Risdon Hills has experienced a marked decline in the last two decades. The other two populations (Lumeah Point and Honeywood Drive) are very small and under threat because of urbanisation. They are close to the large Calverts Hill population and may be remnants of a once larger population in this area prior to clearing for agriculture in the 19th century. A hypervariable chloroplast marker and six nuclear microsatellites, used to quantify genetic diversity among and within populations, indicated marked genetic differences between the two main populations (Risdon and Calverts Hills), with virtually no sharing of chloroplast haplotypes and little sharing of microsatellite alleles among populations. Both of the main populations are clearly required to adequately conserve the genetic diversity in this species, whereas the Lumeah Point and Honeywood Drive populations are similar to the proximal Calverts Hill population. The two main populations showed equally high levels of genetic diversity (average HE = 0.69) in the adult trees, using microsatellites, and little difference in inbreeding levels despite the large difference in population size. Analyses of 366 offspring from 9–11 trees from each main population revealed high outcrossing rates, little bi-parental inbreeding and high genetic diversity (average HE = 0.65) in both seedling populations. This indicates that open-pollinated seed collections from these populations capture sufficient genetic diversity for ex situ conservation plantings. It is argued that the high genetic diversity maintained in the small Risdon Hills population is due to a combination of the longevity of its genotypes (possibly up to 1155–1523 years) through a well developed mechanism of vegetative regeneration from lignotubers, coupled with high outcrossing rates maintained by a strong self-incompatibility mechanism.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Genetic management of fragmented populations involves the application of evolutionary genetic theory and knowledge to alleviate problems due to inbreeding and loss of genetic diversity in small population fragments. Populations evolve through the effects of mutation, natural selection, chance (genetic drift) and gene flow (migration). Large outbreeding, sexually reproducing populations typically contain substantial genetic diversity, while small populations typically contain reduced levels. Genetic impacts of small population size on inbreeding, loss of genetic diversity and population differentiation are determined by the genetically effective population size, which is usually much smaller than the number of individuals.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 89
Author(s):  
Jiayu Li ◽  
Fuxian Yang ◽  
Ruobing Liang ◽  
Sheng Guo ◽  
Yaqiong Guo ◽  
...  

Cryptosporidiumfelis is an important cause of feline and human cryptosporidiosis. However, the transmission of this pathogen between humans and cats remains controversial, partially due to a lack of genetic characterization of isolates from cats. The present study was conducted to examine the genetic diversity of C. felis in cats in China and to assess their potential zoonotic transmission. A newly developed subtyping tool based on a sequence analysis of the 60-kDa glycoprotein (gp60) gene was employed to identify the subtypes of 30 cat-derived C. felis isolates from Guangdong and Shanghai. Altogether, 20 C. felis isolates were successfully subtyped. The results of the sequence alignment showed a high genetic diversity, with 13 novel subtypes and 2 known subtypes of the XIXa subtype family being identified. The known subtypes were previously detected in humans, while some of the subtypes formed well-supported subclusters with human-derived subtypes from other countries in a phylogenetic analysis of the gp60 sequences. The results of this study confirmed the high genetic diversity of the XIXa subtype family of C. felis. The common occurrence of this subtype family in both humans and cats suggests that there could be cross-species transmission of C. felis.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 40
Author(s):  
Evgeny Genelt-Yanovskiy ◽  
Yixuan Li ◽  
Ekaterina Stratanenko ◽  
Natalia Zhuravleva ◽  
Natalia Strelkova ◽  
...  

Ophiura sarsii is a common brittle star species across the Arctic and Sub-Arctic regions of the Atlantic and the Pacific oceans. Ophiurasarsii is among the dominant echinoderms in the Barents Sea. We studied the genetic diversity of O.sarsii by sequencing the 548 bp fragment of the mitochondrial COI gene. Ophiurasarsii demonstrated high genetic diversity in the Barents Sea. Both major Atlantic mtDNA lineages were present in the Barents Sea and were evenly distributed between the northern waters around Svalbard archipelago and the southern part near Murmansk coast of Kola Peninsula. Both regions, and other parts of the O.sarsii range, were characterized by high haplotype diversity with a significant number of private haplotypes being mostly satellites to the two dominant haplotypes, each belonging to a different mtDNA clade. Demographic analyses indicated that the demographic and spatial expansion of O.sarsii in the Barents Sea most plausibly has started in the Bølling–Allerød interstadial during the deglaciation of the western margin of the Barents Sea.


2021 ◽  
Vol 9 (8) ◽  
pp. 1612
Author(s):  
Werner Ruppitsch ◽  
Andjela Nisic ◽  
Patrick Hyden ◽  
Adriana Cabal ◽  
Jasmin Sucher ◽  
...  

In many dairy products, Leuconostoc spp. is a natural part of non-starter lactic acid bacteria (NSLAB) accounting for flavor development. However, data on the genomic diversity of Leuconostoc spp. isolates obtained from cheese are still scarce. The focus of this study was the genomic characterization of Leuconostoc spp. obtained from different traditional Montenegrin brine cheeses with the aim to explore their diversity and provide genetic information as a basis for the selection of strains for future cheese production. In 2019, sixteen Leuconostoc spp. isolates were obtained from white brine cheeses from nine different producers located in three municipalities in the northern region of Montenegro. All isolates were identified as Ln. mesenteroides. Classical multilocus sequence tying (MLST) and core genome (cg) MLST revealed a high diversity of the Montenegrin Ln. mesenteroides cheese isolates. All isolates carried genes of the bacteriocin biosynthetic gene clusters, eight out of 16 strains carried the citCDEFG operon, 14 carried butA, and all 16 isolates carried alsS and ilv, genes involved in forming important aromas and flavor compounds. Safety evaluation indicated that isolates carried no pathogenic factors and no virulence factors. In conclusion, Ln. mesenteroides isolates from Montenegrin traditional cheeses displayed a high genetic diversity and were unrelated to strains deposited in GenBank.


Sign in / Sign up

Export Citation Format

Share Document