scholarly journals Genetic Diversity of Leuconostoc mesenteroides Isolates from Traditional Montenegrin Brine Cheese

2021 ◽  
Vol 9 (8) ◽  
pp. 1612
Author(s):  
Werner Ruppitsch ◽  
Andjela Nisic ◽  
Patrick Hyden ◽  
Adriana Cabal ◽  
Jasmin Sucher ◽  
...  

In many dairy products, Leuconostoc spp. is a natural part of non-starter lactic acid bacteria (NSLAB) accounting for flavor development. However, data on the genomic diversity of Leuconostoc spp. isolates obtained from cheese are still scarce. The focus of this study was the genomic characterization of Leuconostoc spp. obtained from different traditional Montenegrin brine cheeses with the aim to explore their diversity and provide genetic information as a basis for the selection of strains for future cheese production. In 2019, sixteen Leuconostoc spp. isolates were obtained from white brine cheeses from nine different producers located in three municipalities in the northern region of Montenegro. All isolates were identified as Ln. mesenteroides. Classical multilocus sequence tying (MLST) and core genome (cg) MLST revealed a high diversity of the Montenegrin Ln. mesenteroides cheese isolates. All isolates carried genes of the bacteriocin biosynthetic gene clusters, eight out of 16 strains carried the citCDEFG operon, 14 carried butA, and all 16 isolates carried alsS and ilv, genes involved in forming important aromas and flavor compounds. Safety evaluation indicated that isolates carried no pathogenic factors and no virulence factors. In conclusion, Ln. mesenteroides isolates from Montenegrin traditional cheeses displayed a high genetic diversity and were unrelated to strains deposited in GenBank.

2021 ◽  
Vol 13 (4) ◽  
pp. 2289
Author(s):  
Mateja Janeš ◽  
Minja Zorc ◽  
Maja Ferenčaković ◽  
Ino Curik ◽  
Peter Dovč ◽  
...  

Balkan Livestock Guardian Dogs (LGD) were bred to help protect sheep flocks in sparsely populated, remote mountainous areas in the Balkans. The aim of this study was genomic characterization (107,403 autosomal SNPs) of the three LGD breeds from the Balkans (Karst Shepherd, Sharplanina Dog, and Tornjak). Our analyses were performed on 44 dogs representing three Balkan LGD breeds, as well as on 79 publicly available genotypes representing eight other LGD breeds, 70 individuals representing seven popular breeds, and 18 gray wolves. The results of multivariate, phylogenetic, clustering (STRUCTURE), and FST differentiation analyses showed that the three Balkan LGD breeds are genetically distinct populations. While the Sharplanina Dog and Tornjak are closely related to other LGD breeds, the Karst Shepherd is a slightly genetically distinct population with estimated influence from German Shepard (Treemix analysis). Estimated genomic diversity was high with low inbreeding in Sharplanina Dog (Ho = 0.315, He = 0.315, and FROH>2Mb = 0.020) and Tornjak (Ho = 0.301, He = 0.301, and FROH>2Mb = 0.033) breeds. Low diversity and high inbreeding were estimated in Karst Shepherds (Ho = 0.241, He = 0.222, and FROH>2Mb = 0.087), indicating the need for proper diversity management. The obtained results will help in the conservation management of Balkan LGD dogs as an essential part of the specific grazing biocultural system and its sustainable maintenance.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 89
Author(s):  
Jiayu Li ◽  
Fuxian Yang ◽  
Ruobing Liang ◽  
Sheng Guo ◽  
Yaqiong Guo ◽  
...  

Cryptosporidiumfelis is an important cause of feline and human cryptosporidiosis. However, the transmission of this pathogen between humans and cats remains controversial, partially due to a lack of genetic characterization of isolates from cats. The present study was conducted to examine the genetic diversity of C. felis in cats in China and to assess their potential zoonotic transmission. A newly developed subtyping tool based on a sequence analysis of the 60-kDa glycoprotein (gp60) gene was employed to identify the subtypes of 30 cat-derived C. felis isolates from Guangdong and Shanghai. Altogether, 20 C. felis isolates were successfully subtyped. The results of the sequence alignment showed a high genetic diversity, with 13 novel subtypes and 2 known subtypes of the XIXa subtype family being identified. The known subtypes were previously detected in humans, while some of the subtypes formed well-supported subclusters with human-derived subtypes from other countries in a phylogenetic analysis of the gp60 sequences. The results of this study confirmed the high genetic diversity of the XIXa subtype family of C. felis. The common occurrence of this subtype family in both humans and cats suggests that there could be cross-species transmission of C. felis.


2017 ◽  
Vol 48 ◽  
pp. 102-108
Author(s):  
Shahzad Shaukat ◽  
Mehar Angez ◽  
Tariq Mahmood ◽  
Muhammad Masroor Alam ◽  
Salmaan Sharif ◽  
...  

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Taveesak Janetanakit ◽  
Supassama Chaiyawong ◽  
Kamonpan Charoenkul ◽  
Ratanaporn Tangwangvivat ◽  
Ekkapat Chamsai ◽  
...  

Abstract Background Enterovirus G (EV-G) causes subclinical infections and is occasionally associated with diarrhea in pigs. In this study, we conducted a cross-sectional survey of EV-G in pigs from 73 pig farms in 20 provinces of Thailand from December 2014 to January 2018. Results Our results showed a high occurrence of EV-Gs which 71.6 % of fecal and intestinal samples (556/777) and 71.2 % of pig farms (52/73) were positive for EV-G by RT-PCR specific to the 5’UTR. EV-Gs could be detected in all age pig groups, and the percentage positivity was highest in the fattening group (89.7 %), followed by the nursery group (89.4 %). To characterize the viruses, 34 EV-G representatives were characterized by VP1 gene sequencing. Pairwise sequence comparison and phylogenetic analysis showed that Thai-EV-Gs belonged to the EV-G1, EV-G3, EV-G4, EV-G8, EV-G9 and EV-G10 genotypes, among which the EV-G3 was the predominant genotype in Thailand. Co-infection with different EV-G genotypes or with EV-Gs and porcine epidemic diarrhea virus (PEDV) or porcine deltacoronavirus (PDCoV) on the same pig farms was observed. Conclusions Our results confirmed that EV-G infection is endemic in Thailand, with a high genetic diversity of different genotypes. This study constitutes the first report of the genetic characterization of EV-GS in pigs in Thailand.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1962
Author(s):  
Ning Wang ◽  
Chu-Ming Luo ◽  
Xing-Lou Yang ◽  
Hai-Zhou Liu ◽  
Li-Biao Zhang ◽  
...  

Bats have been identified as natural reservoirs of a variety of coronaviruses. They harbor at least 19 of the 33 defined species of alpha- and betacoronaviruses. Previously, the bat coronavirus HKU10 was found in two bat species of different suborders, Rousettus leschenaultia and Hipposideros pomona, in south China. However, its geographic distribution and evolution history are not fully investigated. Here, we screened this viral species by a nested reverse transcriptase PCR in our archived samples collected over 10 years from 25 provinces of China and one province of Laos. From 8004 bat fecal samples, 26 were found to be positive for bat coronavirus HKU10 (BtCoV HKU10). New habitats of BtCoV HKU10 were found in the Yunnan, Guangxi, and Hainan Provinces of China, and Louang Namtha Province in Laos. In addition to H. pomona, BtCoV HKU10 variants were found circulating in Aselliscus stoliczkanus and Hipposideros larvatus. We sequenced full-length genomes of 17 newly discovered BtCoV HKU10 strains and compared them with previously published sequences. Our results revealed a much higher genetic diversity of BtCoV HKU10, particularly in spike genes and accessory genes. Besides the two previously reported lineages, we found six novel lineages in their new habitats, three of which were located in Yunnan province. The genotypes of these viruses are closely related to sampling locations based on polyproteins, and correlated to bat species based on spike genes. Combining phylogenetic analysis, selective pressure, and molecular-clock calculation, we demonstrated that Yunnan bats harbor a gene pool of BtCoV HKU10, with H. pomona as a natural reservoir. The cell tropism test using spike-pseudotyped lentivirus system showed that BtCoV HKU10 could enter cells from human and bat, suggesting a potential interspecies spillover. Continuous studies on these bat coronaviruses will expand our understanding of the evolution and genetic diversity of coronaviruses, and provide a prewarning of potential zoonotic diseases from bats.


Genetika ◽  
2013 ◽  
Vol 45 (3) ◽  
pp. 717-726 ◽  
Author(s):  
Ibrahim Ozyurt ◽  
Yasar Akca ◽  
Sezai Ercisli

Prunus mahaleb is widely used as rootstocks particularly on calcareous and dry soils for both sweet and sour cherry cultivars in Turkey. Genetic diversity and relationships among members of Prunus mahaleb including 29 preselected rootstock candidate accessions from Tokat region in Turkey were investigated by using 15 ISSR markers. The study revealed high genetic diversity among accessions, detecting 138 fragments, of which 103 (75%) were polymorphic. The number of polymorphic bands per primer was between 3-13, with average of 6.86. The primers 890 and 891 gave the highest polymorphism ratio (100%). The UPGMA dendrogram and the principal coordinate analysis revealed a clear differentiation among accessions. Reference rootstock, SL-64 clustered separately. The study demonstrates that ISSRs provide promising marker tools in revealing genetic diversity and relationships in Prunus mahaleb rootstock candidate accessions and can contribute to efficient identification, conservation, and utilization of germplasm for rootstock improvement through conventional as well as molecular breeding approaches.


2018 ◽  
Author(s):  
Siyue Xiao ◽  
Yunheng Ji ◽  
Jian Liu ◽  
Xun Gong

Background Cycas panzhihuaensis L. Zhou & S. Y. Yang (Cycadaceae) is an endangered gymnosperm species endemic in the dry-hot valley of Jinsha River basin from southwest China. Although the wild C. panzhihuaensis population from Panzhihua Cycad Natural Reserve is well protected, other known populations that fall outside the natural reserve may preserve specific genetic resources while face with larger extinction risk because of lacking essential monitoring. Methods In this study, we analyzed the genetic diversity, phylogeographical structure and demographic history of C. panzhihuaensis from seven known locations so far by sequencing three chloroplastic DNA regions (psbA-trnH, psbM-trnD, and trnS-trnG), four single-copy nuclear genes (PHYP, AC5, HSP70, and AAT) from 61 individuals, and eleven microsatellite loci (SSR) from 102 individuals. Results and Discussion We found relative high genetic diversity within populations and high genetic differentiation among the populations of C. panzhihuaensis, which is similar with the other Asian inland cycads. Despite no significant phylogeographical structure was detected, small and unprotected populations possess higher genetic diversity and more unique haplotypes, which deserve due attention. Results of demographic dynamics suggest that human activity is the key factor that leads C. panzhihuaensis to endangered status. Basing on the genetic characterization of C. panzhihuaensis, we proposed several practical guidelines for the conservation of this species, especially for its small populations.


Author(s):  
Narendra Singh Rajpoot ◽  
M. K. Tripathi ◽  
Sushma Tiwari ◽  
R. S. Tomar ◽  
V. S. Kandalkar

The genus Brassica is one of the most important oil seed crops in India with high degree of genetic diversity. In present study, genetic diversity was studied in forty germplasm lines and eight cultivars of Indian mustard using morphological traits and SSR markers. Morphological characters were taken for days to 50% flowering, days to maturity, plant height (cm), length of main raceme (cm), number of primary branches/plant, number of secondary branches/plant, number of silique per plant, number of seeds per silique, 1000 seed weight (g) and seed yield per plant (g). Total 50 SSR markers were used for characterization of these lines, out of which 7 SSR markers were highly polymorphic between all the germplasms of mustard. An UPGMA phonogram was constructed for all 48 Germplasms and the similarity coefficient ranged from 0.00 to 0.91. Number of alleles ranged from 3 to 4, genetic diversity ranged from 71% to 65% with average value of 67%, heterozygosity raged from 20 to 10% with average of 12% and PIC value for markers ranged from 0.65 to 0.59 with mean PIC value 0.61. All seven SSR primers showed PIC value above 0.5 (50%) indicating high genetic diversity in the studied plant material.


2021 ◽  
Author(s):  
Kyle D Gustafson ◽  
Roderick B Gagne ◽  
Michael R Buchalski ◽  
T Winston Vickers ◽  
Seth PD Riley ◽  
...  

Urbanization is decreasing wildlife habitat and connectivity worldwide, including for apex predators, such as the puma (Puma concolor). Puma populations along California's central and southern coastal habitats have experienced rapid fragmentation from development, leading to calls for demographic and genetic management. To address urgent conservation genomic concerns, we used double-digest restriction-site associated DNA (ddRAD) sequencing to analyze 16,285 genome-wide single-nucleotide polymorphisms (SNPs) from 401 broadly sampled pumas. Our analyses indicated support for 4–10 geographically nested, broad- to fine-scale genetic clusters. At the broadest scale, the 4 genetic clusters had high genetic diversity and exhibited low linkage disequilibrium, indicating pumas have retained statewide genomic diversity. However, multiple lines of evidence indicated substructure, including 10 fine-scale genetic clusters, some of which exhibited allelic fixation and linkage disequilibrium. Fragmented populations along the Southern Coast and Central Coast had particularly low genetic diversity and strong linkage disequilibrium, indicating genetic drift and close inbreeding. Our results demonstrate that genetically at-risk populations are typically nested within a broader-scale group of interconnected populations that collectively retains high genetic diversity and heterogeneous fixations. Thus, extant variation at the broader scale has potential to restore diversity to local populations if management actions can enhance vital gene flow and recombine locally sequestered genetic diversity. These state- and genome-wide results are critically important for science-based conservation and management practices. Our broad- and fine-scale population genomic analysis highlights the information that can be gained from population genomic studies aiming to provide guidance for fragmented population conservation management.


Sign in / Sign up

Export Citation Format

Share Document