scholarly journals Water and nitrogen shape winter annual plant diversity and community composition in near‐urban Sonoran Desert preserves

2021 ◽  
Author(s):  
Megan M. Wheeler ◽  
Scott L. Collins ◽  
Nancy B. Grimm ◽  
Elizabeth M. Cook ◽  
Christopher Clark ◽  
...  
2014 ◽  
Author(s):  
Gabriela Garcia ◽  
Sarah Gabriele ◽  
Benjamin Cowgill ◽  
Xavier Rodriguez ◽  
Robert J Gay

Background: The purpose of this study was to determine what floral differences exist in North Mountain Park and Casa Grande Mountain Park which are both located on opposite sides of the Casa Grande Valley, Pinal County, Arizona and to attempt to explain any measured differences. Previous authors have proposed several explanations for floral variation within the Sonoran Desert including elevation, soil pH, and mineral content. This study explicitly tests several of these proposed mechanisms for determining community composition. Methods: The floral composition was measured in both North Mountain Park and Casa Grande Mountain Park through a series of transects which were sampled by multiple times in 2012 and 2013. Elevation data soil pH were also sampled. Results: The data recovered from North Mountain Park differed from the expected values in Casa Grande Mountain Park by 22%. This indicates a significant difference in the flora between these two localities that was not predicted by earlier studies. Elevation and soil pH differences between sampled localities were not significant. This suggests that mineral composition of the soil may play an important role within this basin in determining community composition. Discussion: Many factors that have been proposed in prior studies do not appear to play a significant role within the Casa Grande Valley in determining community composition. This indicates that the composition of a community is influenced by different factors in different locations within the Sonoran Desert. This makes determining overall controlling factors across an ecosystem difficult.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7798
Author(s):  
Lauren E. Azevedo Schmidt ◽  
Regan E. Dunn ◽  
Jason Mercer ◽  
Marieke Dechesne ◽  
Ellen D. Currano

Ecosystem function and stability are highly affected by internal and external stressors. Utilizing paleobotanical data gives insight into the evolutionary processes an ecosystem undergoes across long periods of time, allowing for a more complete understanding of how plant and insect herbivore communities are affected by ecosystem imbalance. To study how plant and insect herbivore communities change during times of disturbance, we quantified community turnover across the Paleocene­–Eocene boundary in the Hanna Basin, southeastern Wyoming. This particular location is unlike other nearby Laramide basins because it has an abundance of late Paleocene and Eocene coal and carbonaceous shales and paucity of well-developed paleosols, suggesting perpetually high water availability. We sampled approximately 800 semi-intact dicot leaves from five stratigraphic levels, one of which occurs late in the Paleocene–Eocene thermal maximum (PETM). Field collections were supplemented with specimens at the Denver Museum of Nature & Science. Fossil leaves were classified into morphospecies and herbivore damage was documented for each leaf. We tested for changes in plant and insect herbivore damage diversity using rarefaction and community composition using non-metric multidimensional scaling ordinations. We also documented changes in depositional environment at each stratigraphic level to better contextualize the environment of the basin. Plant diversity was highest during the mid-late Paleocene and decreased into the Eocene, whereas damage diversity was highest at the sites with low plant diversity. Plant communities significantly changed during the late PETM and do not return to pre-PETM composition. Insect herbivore communities also changed during the PETM, but, unlike plant communities, rebound to their pre-PETM structure. These results suggest that insect herbivore communities responded more strongly to plant community composition than to the diversity of species present.


2020 ◽  
Vol 24 (6) ◽  
pp. 1005-1015
Author(s):  
Torbjörn Tyler

Abstract The diversity and community composition of moths (both macro- and micromoths) at 32 sites, representing a wide range of habitat types (forests, grasslands, wetlands, agricultural and urban areas) within a restricted region in central Scania, southern-most Sweden, was investigated by use of light moth traps and compared with vascular plant species richness and habitat characteristics. The results revealed a highly significant general association between vegetation composition and the composition of the moth community and multivariate (CCA) analyses indicated light availability and soil fertility parameters (pH and macronutrients) to be the habitat characteristics that best correlated with moth community composition. Less strong, but still significant, positive relationships between moth abundance and local vascular plant diversity were also revealed. Moth species richness was positively correlated with diversity of woody plant genera in the neighborhood, but not with local vascular plant diversity in general. As for more general site characteristics, there were tendencies for higher moth richness and abundance at sites with more productive soils (well-drained, high pH, high nutrient availability), while shading/tree canopy cover, management, soil disturbance regimes and nectar production appeared unrelated to moth community parameters. It is concluded that local moth assemblages are strongly influenced by site characteristics and vegetation composition. Implications for insect conservation: The results show that obtaining moth data on a local scale is useful for conservation planning and does not need to be very cumbersome. Local moth assemblages monitored are indeed related to local site characteristics of conservation relevance.


2017 ◽  
Vol 144 (2) ◽  
pp. 125-138 ◽  
Author(s):  
Kathryn M. Flinn ◽  
Jennifer L. Mikes ◽  
Hannah A. D. Kuhns

Ecology ◽  
2017 ◽  
Vol 99 (1) ◽  
pp. 196-203 ◽  
Author(s):  
Jonathan L. Horst ◽  
D. Lawrence Venable

2018 ◽  
Author(s):  
Marc W. Schmid ◽  
Terhi Hahl ◽  
Sofia J. van Moorsel ◽  
Cameron Wagg ◽  
Gerlinde B. De Deyn ◽  
...  

AbstractSoil microbes are known to be involved in a number of essential ecosystem processes such as nutrient cycling, plant productivity and the maintenance of plant species diversity. However, how plant species diversity and identity affect soil microbial diversity and community composition is largely unknown. We tested whether, over the course of 11 years, distinct soil bacterial communities developed under plant monocultures and mixtures, and if over this timeframe plants with a monoculture or mixture history changed in the microbial communities they associated with. For eight species, we grew offspring of plants that had been grown for 11 years in the same monocultures or mixtures (monoculture- or mixture-type plants) in pots inoculated with microbes extracted from the monoculture and mixture soils. After five months of growth in the glasshouse, we collected rhizosphere soil from each plant and used 16S-rRNA gene sequencing to determine the community composition and diversity of the bacterial communities. Microbial community structure in the plant rhizosphere was primarily determined by soil legacy (monoculture vs. mixture soil) and by plant species identity, but not by plant legacy (monoculture- vs. mixture-type plants). In seven out of the eight plant species bacterial abundance was larger when inoculated with microbes from mixture soil. We conclude that plant diversity can strongly affect belowground community composition and diversity, feeding back to the assemblage of rhizosphere microbial communities in newly establishing plants. Thereby our work demonstrates that concerns for plant biodiversity loss are also concerns for soil biodiversity loss.


Weed Science ◽  
1974 ◽  
Vol 22 (2) ◽  
pp. 185-187 ◽  
Author(s):  
Raymond A. Evans ◽  
James A. Young ◽  
Burgess L. Kay

Three annual plant species — erect plantain (Plantago erectaMorris), common chickweed [Stellaria media(L.) Cyrill.], and silver hairgrass (Aira caryophylleaL.)—are commonly found and may dominate a unique flora on areas sprayed with paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) in cismontane rangelands of California. The basis of this phenomenon is shown to be temperature-related germination requirements, novel seed characteristics, and lack of competition.


Oecologia ◽  
2004 ◽  
Vol 142 (4) ◽  
pp. 606-615 ◽  
Author(s):  
Ansgar Kahmen ◽  
J�rg Perner ◽  
Volker Audorff ◽  
Wolfgang Weisser ◽  
Nina Buchmann

2016 ◽  
Vol 27 (3) ◽  
pp. 578-586 ◽  
Author(s):  
Oren Hoffman ◽  
Natalie de Falco ◽  
Hezi Yizhaq ◽  
Bertrand Boeken

Sign in / Sign up

Export Citation Format

Share Document