scholarly journals Radial growth responses of tulip poplar ( Liriodendron tulipifera ) to climate in the eastern United States

Ecosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
Author(s):  
David LeBlanc ◽  
Justin Maxwell ◽  
Neil Pederson ◽  
Adam Berland ◽  
Tessa Mandra

2020 ◽  
Vol 70 (3) ◽  
pp. 326-334
Author(s):  
Marly Gabriela Carmona Uzcategui ◽  
Roy Daniel Seale ◽  
Frederico José Nistal França

Abstract Maple and poplar are common names of species that grow in the eastern United States. Physical and mechanical properties were evaluated from small clear wood specimens of hard maple (Acer saccharum) and yellow poplar (Liriodendron tulipifera). Specific gravity, static bending strength and modulus of elasticity, compression parallel and perpendicular to grain, and Janka hardness were tested. The experiments were carried out on defect-free specimens extracted from boards supplied by members of the Staircase Manufacturers Association. The material was donated by companies located in the eastern United States. On the basis of the findings, it can be stated that mechanical properties for maple and yellow poplar have not changed substantially because the average values remain in a range that is very close to the values published in previous studies.





Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1094 ◽  
Author(s):  
Evan E. Montpellier ◽  
Peter T. Soulé ◽  
Paul A. Knapp ◽  
Justin T. Maxwell

Ponderosa pine (PP) is the most common and widely distributed pine species in the western United States, spanning from southern Canada to the United States–Mexico border. PP can be found growing between sea level and 3000 meters elevation making them an ideal species to assess the effects of changing climatic conditions at a variety of elevations. Here we compare PP standardized and raw growth responses to climate conditions along an elevational transect spanning 1000 meters in western Montana, U.S.A., a region that experienced a 20th century warming trend and is expected to incur much warmer (3.1–4.5 °C) and slightly drier summers (~0.3 cm decrease per month) by the end on the 21st century. Specifically, we assess if there are climate/growth differences based on relative (i.e., site-specific) and absolute (i.e., combined sites) elevation between groups of trees growing in different elevational classes. We find that values of the Palmer drought severity index (PDSI) in July are most strongly related to radial growth and that within-site elevation differences are a poor predictor of the response of PP to either wet or dry climatic conditions (i.e., years with above or below average July PDSI values). These results suggest that any generalization that stands of PP occurring at their elevational margins are most vulnerable to changing climatic may not be operative at these sites in western Montana. Our results show that when using standardized ring widths, PP growing at the lowest and highest elevations within western Montana exhibit differential growth during extreme climatological conditions with lower-elevation trees outperforming higher-elevation trees during dry years and vice versa during wet years.





Sign in / Sign up

Export Citation Format

Share Document